SP1716 GSS3 - Can you answer these queries III
也真是服了,浪费几分钟来搞这种题目。
直接线段树维护一下端点信息即可,具体来说就是左右端点的权值最大值,答案还有区间权值和。
#include <bits/stdc++.h>
using namespace std;
//#define Fread
//#define Getmod
#ifdef Fread
char buf[1 << 21], *iS, *iT;
#define gc() (iS == iT ? (iT = (iS = buf) + fread (buf, 1, 1 << 21, stdin), (iS == iT ? EOF : *iS ++)) : *iS ++)
#define getchar gc
#endif // Fread
template <typename T>
void r1(T &x) {
x = 0;
char c(getchar());
int f(1);
for(; c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
for(; '0' <= c && c <= '9';c = getchar()) x = (x * 10) + (c ^ 48);
x *= f;
}
template <typename T,typename... Args> inline void r1(T& t, Args&... args) {
r1(t); r1(args...);
}
//#define int long long
const int maxn = 2e5 + 5;
const int maxm = maxn << 1;
int n, m;
int a[maxn];
struct Node {
int mxl, mxr, val, sum;
}t[maxn << 2];
Node merge(Node u, Node v) {
Node res;
res.mxl = max(u.mxl, u.sum + v.mxl);
res.mxr = max(v.mxr, v.sum + u.mxr);
res.sum = u.sum + v.sum;
res.val = max(max(u.val, v.val), u.mxr + v.mxl);
return res;
}
struct Seg {
#define ls (p << 1)
#define rs (p << 1 | 1)
#define mid ((l + r) >> 1)
void build(int p,int l,int r) {
if(l == r) return t[p].mxl = t[p].mxr = t[p].val = t[p].sum = a[l], void();
build(ls, l, mid), build(rs, mid + 1, r);
t[p] = merge(t[ls], t[rs]);
}
void change(int p,int l,int r,int pos) {
if(l == r) return t[p].mxl = t[p].mxr = t[p].val = t[p].sum = a[l], void();
if(pos <= mid) change(ls, l, mid, pos);
else change(rs, mid + 1, r, pos);
t[p] = merge(t[ls], t[rs]);
}
Node Ask(int p,int l,int r,int ll,int rr) {
if(ll <= l && r <= rr) return t[p];
if(ll <= mid && rr <= mid) return Ask(ls, l, mid, ll, rr);
else if(mid < rr && mid < ll) return Ask(rs, mid + 1, r, ll, rr);
else return merge(Ask(ls, l, mid, ll, rr), Ask(rs, mid + 1, r, ll, rr));
}
}T;
signed main() {
// freopen("S.in", "r", stdin);
// freopen("S.out", "w", stdout);
int i, j;
r1(n);
for(i = 1; i <= n; ++ i) r1(a[i]);
T.build(1, 1, n);
r1(m);
for(i = 1; i <= m; ++ i) {
int opt, l, r;
r1(opt, l, r);
if(opt == 0) {
a[l] = r;
T.change(1, 1, n, l);
}
else {
printf("%d\n", T.Ask(1, 1, n, l, r).val);
}
}
return 0;
}
本文介绍了SP1716 GSS3算法题目的解题思路,重点是利用线段树来维护区间端点的最大权值以及区间权值和,以高效解决查询问题。
793

被折叠的 条评论
为什么被折叠?



