周期信号的傅里叶级数表示

基本概念

  • 复指数集包括连续时间的 est e s t 和离散时间信号的 zN z N 信号,其中 s s z都是复数.一般来说, s s z可以是任意复数,但傅里叶分析仅限于这些变量的特殊形式.
    • 在连续时间情况下仅涉及 s s 的纯虚部值,即s=jw,因此仅考虑 ejwt e j w t 形式的复指数.
    • 在离散时间情况下仅限于单位振幅的 z z 值,即z=ejw,因此仅考虑 ejwn e j w n 形式的复指数.

线性时不变系统对复指数信号的响应

  • 在研究线性时不变系统时,将信号表示为基本信号的线性组合是有利的,这些基本信号应该具有以下两个性质.

    • 有这些基本信号能够构成相当广泛的一类有用信号
    • 线性时不变系统对每一个基本信号的响应应该十分简单,以使系统对任意输入信号的响应有一个很方便的表达式
  • 连续和离散时间信号集都具有上述两个性质,即连续时间的 est e s t 和离散时间信号的 zN z N 信号,其中 s s z都是复数.

  • 在研究线性时不变系统时,复指数信号的重要性在于这样一个事实.即一个线性时不变系统对复指数信号的响应也是同样一个复指数信号,不同的只是幅度上的变换,即
    estH(s)estzNH(z)zN(1) (1) e s t → H ( s ) e s t z N → H ( z ) z N

    其中 H(s) H ( s ) H(z)) H ( z ) ) 是一个复振幅因子,一般来说是复变量 s s z的函数.

对公式(1)的证明如下

  • 连续时间系统,其单位冲激响应为 h(t) h ( t ) ,输入 x(t)=est x ( t ) = e s t
    y(t)=+h(τ)x(tτ)dτ=+h(τ)es(tτ)dτ=est+h(τ)esτdτ(1)(2)(3) (1) y ( t ) = ∫ − ∞ + ∞ h ( τ ) x ( t − τ ) d τ (2) = ∫ − ∞ + ∞ h ( τ ) e s ( t − τ ) d τ (3) = e s t ∫ − ∞ + ∞ h ( τ ) e − s τ d τ

    H(s)=+h(τ)esτdτ H ( s ) = ∫ − ∞ + ∞ h ( τ ) e − s τ d τ ,假定 H(s) H ( s ) 收敛,于是系统对 est e s t 的响应为
    y(t)=H(s)est y ( t ) = H ( s ) e s t

    其中 H(s) H ( s ) 是一个常复数,其值决定于 s s .
  • 离散时间系统,其单位冲激响应为h(n),输入 x(n)=zn x ( n ) = z n
    y(n)=k=+h(k)x(nk)=k=+h(k)znk=k=+znh(k)zk(4)(5)(6) (4) y ( n ) = ∑ k = − ∞ + ∞ h ( k ) x ( n − k ) (5) = ∑ k = − ∞ + ∞ h ( k ) z n − k (6) = ∑ k = − ∞ + ∞ z n h ( k ) z − k

    H(z)=+k=h(k)zkdτ H ( z ) = ∑ k = − ∞ + ∞ h ( k ) z − k d τ ,假定 H(z) H ( z ) 收敛,于是系统对 zn z n 的响应为
    y(n)=H(z)zn y ( n ) = H ( z ) z n

    其中 H(z) H ( z ) 是一个常数,其值决定于 z z .

连续时间傅里叶级数

  • 连续时间周期信号的傅里叶级数表示
    x(t)=k=+akejkw0t=k=+akejk(2π/T)tak=1TTx(t)ejkw0tdt=1TTx(t)ejk(2π/T)tdt

    • 傅里叶级数的收敛
      • 问题引出:对于任何周期信号,总能求得一组 ak a k .然而,在某些情况下, ak a k 求得的值可能是无限大,导致求得的 x(t) x ( t ) 不收敛.
      • 对于大部分周期信号而言不存在不收敛问题. 如果一个周期信号满足如下条件,就能保证该信号可用傅里叶级数表示.
        • 在任何周期内, x(t) x ( t ) 必须绝对可积,即
          T|x(t)|< ∫ T | x ( t ) | < ∞

          这一条件保证了每一系数 ak a k 都是有限值,
        • 在任意区间内, x(t) x ( t ) 具有有限个起伏变化;也就是说,在任何单个周期内, x(t) x ( t ) 的最大值和最小值的数目有限.
        • x(t) x ( t ) 的任何有限区间内,只有有限个不连续点,而且在这些不连续点上,函数是有限值.

连续时间傅里叶级数性质

这里写图片描述

部分性质证明

  • 时移性质
    ak=1TTx(t)ejkw0tdt=1TTx(t)ejk(2π/T)tdt a k = 1 T ∫ T x ( t ) e − j k w 0 t d t = 1 T ∫ T x ( t ) e − j k ( 2 π / T ) t d t

    bk=1TTx(tt0)ejkw0tdt=1TTx(τ)ejk(2π/T)(τ+t0)dττ=tt0=1TTx(τ)ejk(2π/T)τdτ ejk(2π/T)t0=ejk(2π/T)t0 ak(7)(8)(9)(10) (7) b k = 1 T ∫ T x ( t − t 0 ) e − j k w 0 t d t (8) = 1 T ∫ T x ( τ ) e − j k ( 2 π / T ) ( τ + t 0 ) d τ ⇐ τ = t − t 0 (9) = 1 T ∫ T x ( τ ) e − j k ( 2 π / T ) τ d τ   ⋅ e − j k ( 2 π / T ) t 0 (10) = e − j k ( 2 π / T ) t 0   ⋅ a k
  • 时域相乘 待证明,未完成
    这里写图片描述
    假设 x(t) x ( t ) , y(t) y ( t ) 是两个周期为T的周期信号,则乘积 x(t)y(t) x ( t ) y ( t ) 也是周期信号,周期为T.
    x(t)aky(t)bkx(t)y(t)hk x ( t ) ↔ a k y ( t ) ↔ b k x ( t ) y ( t ) ↔ h k

    ak=1TTx(t)ejkw0tdt=1TTx(t)ejk(2π/T)tdtbk=1TTy(t)ejkw0tdt=1TTy(t)ejk(2π/T)tdtx(t)=k=+akejkw0t=k=+akejk(2π/T)ty(t)=k=+bkejkw0t=k=+bkejk(2π/T)t a k = 1 T ∫ T x ( t ) e − j k w 0 t d t = 1 T ∫ T x ( t ) e − j k ( 2 π / T ) t d t b k = 1 T ∫ T y ( t ) e − j k w 0 t d t = 1 T ∫ T y ( t ) e − j k ( 2 π / T ) t d t x ( t ) = ∑ k = − ∞ + ∞ a k e j k w 0 t = ∑ k = − ∞ + ∞ a k e j k ( 2 π / T ) t y ( t ) = ∑ k = − ∞ + ∞ b k e j k w 0 t = ∑ k = − ∞ + ∞ b k e j k ( 2 π / T ) t

    hk=1TTx(t)y(t)ejkw0tdt=1TTm=+amejmw0t n=+bnejnw0t ejkw0tdt=1TTm=+n=+ambnej(m+n)w0t ejkw0tdt=1TTm=+n=+ambnej(m+nk)w0t}dt=1TTm=+n=+ambnej(m+nk)w0t}dt(11)(12)(13)(14)(15) (11) h k = 1 T ∫ T x ( t ) y ( t ) e − j k w 0 t d t (12) = 1 T ∫ T ∑ m = − ∞ + ∞ a m e j m w 0 t   ⋅ ∑ n = − ∞ + ∞ b n e j n w 0 t   ⋅ e − j k w 0 t d t (13) = 1 T ∫ T ∑ m = − ∞ + ∞ ∑ n = − ∞ + ∞ a m b n e j ( m + n ) w 0 t   ⋅ e − j k w 0 t d t (14) = 1 T ∫ T ∑ m = − ∞ + ∞ ∑ n = − ∞ + ∞ a m b n e j ( m + n − k ) w 0 t } d t (15) = 1 T ∫ T ∑ m = − ∞ + ∞ ∑ n = − ∞ + ∞ a m b n e j ( m + n − k ) w 0 t } d t

    • 时域卷积
      这里写图片描述
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
假设我们有一个周期为 $T$ 的信号 $f(t)$,则可以将其表示傅里叶级数形式: $$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty}\left(a_n\cos\left(\frac{2\pi nt}{T}\right) + b_n\sin\left(\frac{2\pi nt}{T}\right)\right)$$ 其中,系数 $a_0$、$a_n$ 和 $b_n$ 可以通过如下公式计算: $$a_0 = \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)dt$$ $$a_n = \frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)\cos\left(\frac{2\pi nt}{T}\right)dt$$ $$b_n = \frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)\sin\left(\frac{2\pi nt}{T}\right)dt$$ 现在,我们可以使用 MATLAB 来绘制周期信号傅里叶级数图像,具体步骤如下: 1. 定义周期信号 $f(t)$ 的表达式; 2. 定义傅里叶级数级数上限 $N$; 3. 计算 $a_0$、$a_n$ 和 $b_n$ 系数; 4. 构建傅里叶级数表达式; 5. 绘制傅里叶级数图像。 下面是一个 MATLAB 示例代码,用于绘制周期为 $2\pi$ 的方波信号傅里叶级数图像: ```matlab % 定义周期为 2*pi 的方波信号 T = 2*pi; % 周期 t = linspace(-2*pi, 2*pi, 1000); % 时间范围 f = square(t); % 定义级数上限 N = 50; % 计算系数 a0 = 1/2; an = zeros(1, N); bn = zeros(1, N); for n = 1:N an(n) = (2/T) * trapz(t, f.*cos(n*t)); bn(n) = (2/T) * trapz(t, f.*sin(n*t)); end % 构建傅里叶级数表达式 F = a0/2; for n = 1:N F = F + an(n)*cos(n*t) + bn(n)*sin(n*t); end % 绘制图像 figure; plot(t, f, 'k', 'LineWidth', 2); hold on; plot(t, F, 'r--', 'LineWidth', 2); xlabel('时间'); ylabel('幅度'); title('方波信号傅里叶级数'); legend('原始信号', '傅里叶级数'); ``` 运行上述代码,即可得到方波信号傅里叶级数图像。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值