新缸中之脑

Brain in a vat

自定义博客皮肤

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

趋势2018:聊天机器人

在八月份,我就聊天机器人(chatbot)行业的现状分享了一些看法 。 这个帖子引起的兴趣和关注让我感到非常惊讶。 许多读者私下联系我,并且分享了他们自己的相关经验。 现在是2017年底,因此我想回顾总结一下,就2018年聊天机器人的趋势分享我的观点 。

2017-12-31 11:13:24

阅读数 1026

评论数 0

机器学习实战:车辆检测

当我们开车时会经常关注环境,尤其关注那些潜在障碍物的位置,不管是汽车、行人还是道路上的物体​​。 同样,当我们开发自动驾驶车辆所需的智能和传感器时,最重要的一点是这些车辆能够检测到障碍物,因为它加强了车辆对环境的理解。 其中一种最重要的障碍物是道路上的其他车辆,因为它们很可能是我们车道或邻近道路上...

2017-12-27 19:11:26

阅读数 2129

评论数 1

机器学习实战:车牌识别系统

在本教程中,我将带你使用Python来开发一个利用机器学习技术的车牌识别系统(License Plate Recognition)。 车牌识别系统使用光学字符识别(OCR)技术来读取车牌上的字符。 换句话说,车牌识别系统以车辆图像作为输入并输出车牌中的字符。 如果你是一个卧底或侦探,就能想象这会...

2017-12-26 18:48:48

阅读数 7297

评论数 2

小白的机器学习之路:Numpy探索

这是numpy教程系列的第二部分。 如果你还没有阅读过第一部分,我建议你先读一下。 在这个教程中,我将介绍Numpy中与数据科学和机器学习相关的重要知识点,也就是说,我不打算涵盖numpy所有的功能。

2017-12-25 12:49:57

阅读数 235

评论数 0

小白的机器学习:Numpy矩阵扫盲

让我们马上开始。 Numpy是Python的数学计算库。 它使我们能够高效地进行计算,比Python自带的列表强太多了。 在本文中,我将介绍机器学习和数据科学中经常会用到的Numpy的基础知识。 我不打算涵盖Numpy库的所有功能。 这是numpy教程系列的第一部分。

2017-12-21 22:03:14

阅读数 265

评论数 0

如何选择机器学习算法?

在这篇文章中,我将解释机器学习算法的类型以及应当如何针对你的任务进行选择。 我认为了解机器学习算法的类型,有助于看清人工智能技术的全貌,理解在这个领域中大家在做的所有事情的目标是什么,从而可以帮助你更好地分析现实问题并设计出一个机器学习系统。 本文会使用如下术语: 标注过的数据 (label...

2017-12-17 00:33:49

阅读数 358

评论数 0

让机器帮你写博客-机器学习实战

我们都对深度神经网络(deep neural network)的最新发展感到兴奋。 在深度学习的各种应用当中,自然语言处理(Natural Language Process)方面的应用引起了相当多的兴趣。 很高兴看到一个机器学习模型可以生成高精度的文本,比如莎士比亚、维基百科 、 哈利·波特 、 ...

2017-12-16 21:37:30

阅读数 351

评论数 0

15分钟实战机器学习:验证码(CAPTCHA)识别

让我们使用机器学习(machine learning)来绕过世界上最流行的Wordpress验证码插件! 每个人都不喜欢验证码(CAPTCHA) - 那些令人讨厌的图像中包含了你必须正确输入的文本,只有输入成功后才能访问网站。 验证码旨在通过验证你是一个真实的人来防止机器(蠕虫)自动填写表格。 ...

2017-12-15 11:29:06

阅读数 12981

评论数 13

如何成为机器学习工程师:学习路径

从简单的线性回归(linear regressoin)到最新的神经网络(neural network),我们将引导你学习机器学习(ML:machine learning)的各个方面,不仅学习如何使用它们,而且学习如何从头开始构建它们。 这条学习路径的很大一部分是以计算机视觉(CV: Comput...

2017-12-14 21:25:45

阅读数 374

评论数 0

阿尔法狗的秘密:人工智能中的强化学习

在强化学习中 ,虽然没有现成的答案,但是强化学习代理(`agent`)仍然必须决定如何行动(`action`)来完成它自己的任务。 在没有训练数据的情况下,代理从经验中学习。 它通过反复的试错来收集训练样本(“这个动作很好,那个动作很糟糕”),学习的目标就是使其长期奖励(`reward`)最大化 。

2017-12-12 23:38:57

阅读数 4716

评论数 0

面向非专家的DL系列之一:深度学习的4个突破

无论你是个人还是机构,如果要开始在产品中应用深度学习技术,都需要先了解两部分的信息: 深度学习能做什么 :首先需要了解深度学习领域最新的发展,知道它现在的能力所及 如何运用深度学习 :还需要了解如何训练新涌现的模型,或如何将现有模型运用到生产中去 由于开源社区的优势,第二部分(即如何运用)现在已经...

2017-12-11 01:34:57

阅读数 178

评论数 0

助力AI淘金:机器学习公开数据集

建立人工智能(AI)或基于机器学习的系统从未像今天这样容易。 TensorFlow , Torch和Spark等先进的开源工具的无处不在,加上AWS , Google Cloud或其他云提供商提供的大量计算能力,意味着你喝着咖啡,用笔记本电脑就可以训练一个高端的模型。虽然不属于AI炒作的核心,但A...

2017-12-09 23:16:37

阅读数 303

评论数 0

对抗自编码器指南之一:自编码器

自编码器是一种特殊的神经网络(`neural network`),它的输出目标(`target`)就是输入(所以它基本上就是试图将输出重构为输入),由于它不需要任何人工标注,所以可以采用无监督的方式进行训练。 自编码器包括两个组成部分:编码器和解码器。

2017-12-09 19:21:41

阅读数 5461

评论数 1

基于递归神经网络(RNN)的口语理解(SLU)

在之前的教程中,我们介绍了卷积神经网络(CNN)和keras深度学习框架。 我们用它们解决了一个计算机视觉(CV)问题:交通标志识别。 今天,我们将用keras解决一个自然语言处理(NLP)问题。问题和数据集我们要解决的问题是自然语言理解(Natural Language Understandin...

2017-12-08 11:19:24

阅读数 3088

评论数 0

基于神经网络的文本意图(intent)识别

了解聊天机器人(chatbots)的工作原理很重要。 聊天机器人的一个基本机制是利用文本分类器进行意图识别 。 我们来看一下人工神经网络(ANN)的内部工作原理。 在这个教程中,我们将使用2层神经元(1个隐层)和词袋(bag of words)方法来组织我们的训练数据。 文本分类的方法有三种 :...

2017-12-07 12:29:54

阅读数 12626

评论数 1

聊天机器人(Chatbot)开发:自然语言处理(NLP)技术栈

我相信在大多数情况下,聊天机器人的开发者构建自己的自然语言解析器,而不是使用第三方云端API,是有意义的选择。 这样做有很好的战略性和技术性方面的依据,我将向你展示自己实现NLP有多么简单。 这篇文章包含3个部分: 为什么要自己做 最简单的实现也很有效 你可以真正用起来的东西 那么要实现一个典型的...

2017-12-06 11:45:45

阅读数 3686

评论数 0

聊天机器人(chatbot)终极指南:自然语言处理(NLP)和深度机器学习(Deep Machine Learning)

在过去的几个月中,我一直在收集自然语言处理(NLP)以及如何将NLP和深度学习(Deep Learning)应用到聊天机器人(Chatbots)方面的最好的资料。时不时地我会发现一个出色的资源,因此我很快就开始把这些资源编制成列表。 不久,我就发现自己开始与bot开发人员和bot社区的其他人共享这...

2017-12-06 00:47:26

阅读数 5835

评论数 0

胶囊网络(Capsule Network)的TensorFlow实现

胶囊网络(Capsule Network)的TensorFlow实现 `Geoffrey Hinton`的胶囊网络(`Capsule Network`)震动了整个人工智能领域,它将卷积神经网络(CNN)的极限推到一个新的水平。本文使用谷歌的`Colaboratory`工具在`TensorFlow...

2017-12-05 20:05:29

阅读数 24289

评论数 7

提示
确定要删除当前文章?
取消 删除