计算机毕业设计Springboot基于Spark的用户行为数据挖掘与分析解决方案y4ewdtz9 (配套有源码 程序 mysql数据库 论文)本套源码可以先看具体功能演示视频领取,文末有联xi 可分享
在当今数字化时代,用户行为数据的挖掘与分析已成为企业洞察市场需求、优化产品设计、提升用户体验的关键手段。随着互联网的飞速发展,海量的用户行为数据不断涌现,如何高效地处理和分析这些数据,为企业决策提供有力支持,成为了一个亟待解决的问题。基于此,本系统采用Spring Boot框架结合Spark技术,构建了一个高效、稳定且功能丰富的用户行为数据挖掘与分析平台。
系统功能介绍
本系统的主要功能包括:
-
用户行为数据收集:通过集成Scrapy爬虫技术,高效收集用户在平台上的行为日志,如点击流、购买记录和搜索习惯等。
-
数据存储与管理:采用MySQL数据库对收集到的用户行为数据进行存储和管理,确保数据的安全性和完整性。
-
用户行为分析:利用Spark强大的分布式计算能力,对用户行为数据进行实时分析,支持分类、聚类、关联规则学习和序列模式挖掘等多种数据分析方法。
-
个性化推荐:引入基于用户相似度的协同过滤算法,为用户提供个性化的推荐服务,提升用户满意度。
-
数据可视化展示:通过Echarts技术实现数据可视化大屏,直观展示用户行为分析结果,帮助企业管理者快速把握市场动态。
-
系统管理:提供用户管理、购物日志管理、系统简介管理等功能,支持对系统的基本信息进行维护和更新。
-
用户信息管理:用户可以查看和管理自己的购物日志、个人信息等,提升用户体验。
系统功能总结
本系统通过整合Spring Boot框架、Spark分布式计算引擎、MySQL数据库以及Echarts可视化工具,构建了一个功能强大且易于扩展的用户行为数据挖掘与分析平台。它不仅能够高效地收集和存储海量用户行为数据,还能通过先进的数据分析算法深入挖掘用户需求,为企业提供精准的市场洞察。同时,系统还具备良好的用户体验和灵活的管理功能,能够满足不同用户和企业管理者的需求。
注:完成的毕业设计程序以下面的的环境软件、功能图和界面为准。
系统所需要的环境软件:idea、eclipse+mysql5.7、8.0+Navicat+JDK1.8+tomcat7.0
系统用例分析
基于Spark的用户行为数据挖掘与分析解决方案综合网络空间开发设计要求。目的是将传统管理方式转换为在网上管理,完成用户行为数据挖掘与分析的方便快捷、安全性高、交易规范做了保障,目标明确。基于Spark的用户行为数据挖掘与分析解决方案可以将功能划分为管理员功能和用户功能。
(1)管理员关键功能包含用户、购物日志、系统简介、我的信息等进行管理。管理员用例如下:
图3-1 管理员用例图
(2)用户关键功能包含购物日志、我的信息等进行管理。用户用例如下:
图3-2 用户用例图
3.5 系统流程分析
系统登录流程图如图所示3-3所示。
图3-3 系统登录流程图
用户和管理员可以添加信息,内容没有问题之后按下确定键就添加成功了。添加信息流程图如图3-4所示.
图3-4 添加信息流程图
用户可以选择把自己发布的信息删掉,选择要删除的文章确认之后,删除信息的操作就完成了。删除信息流程图如图3-5所示。
图3-5 删除信息流程图
3.6 本章小结
本章主要是对基于Spark的用户行为数据挖掘与分析解决方案的可行性分析和所要实现的功能进行分析,在对一系列的系统可行性分析之后,又详细的讲述了项目的目标与原则,让人们深刻的了解基于Spark的用户行为数据挖掘与分析解决方案的设计思想,之后重点对登录模块、添加模块和删除模块的流程进行了详细的图文介绍。
本章主要讲述的是基于Spark的用户行为数据挖掘与分析解决方案的设计开发结构,简单介绍了开发流程与数据库设计的原则以及数据表的关系结构图,并且详细的展示了数据表的内部结构信息与属性。
4.1 系统体系结构
系统启动后,在登录界面,输入正确的账号密码,选择进入管理员界面和用户界面,管理员界面是用来管理页面与其他用户信息,用户界面可以正常的使用,并进行份内的操作,系统登录结构图如图4-1所示。
图4-1 系统登录结构图
管理员模块属于是网站的后台,进入之后有大量的管理员功能,管理员也可以使用其他用户模块的功能,为了维护网站的稳定与页面的布局,将管理员模块的功能详细化后可以使用系统管理对页面进行布局修改,可以发布公告提示用户规范,基于Spark的用户行为数据挖掘与分析解决方案总体结构如图4-2所示。
图4-2 系统总体结构图
4.2 数据库设计原则
数据库设计之后,根据数据库关系,可以更加清晰地了解到数据库结构,每一个数据表之间的关系,再创建数据表。快速更改和查询对应的信息,有了数据库就不用在程序和代码中寻找。
分析基于Spark的用户行为数据挖掘与分析解决方案的数据结构后,在系统中将“用户、看板、管理员、购物日志”等作为实体,它们的局部E-R如下图所示:
图4-3 局部E-R图
系统实现
本章讲述的是系统对各个模块功能实现的效果图,对首页、管理员功能、用户功能分别进行了展示,页面布局清晰,操作简单快捷,基本实现了对用户和管理员对系统的需求。
5.1 系统注册登录功能实现
系统注册:在注册流程中,用户在Vue前端填写必要信息(如用户名、密码等)并提交。前端将这些信息通过HTTP请求发送到Java后端。后端处理这些信息,检查用户名是否唯一,并将新用户数据存入MySQL数据库。完成后,后端向前端发送注册成功的确认,前端随后通知用户完成注册。这个过程实现了新用户的数据收集、验证和存储。系统注册页面如图5-1所示:
图5-1系统注册页面
后台登录:在登录流程中,用户首先在Vue前端界面输入用户名和密码。这些信息通过HTTP请求发送到Java后端。后端接收请求,通过与MySQL数据库交互验证用户凭证。如果认证成功,后端会返回给前端,允许用户访问系统。这个过程涵盖了从用户输入到系统验证和响应的全过程。如图5-2所示。
图5-2 系统登录界面
5.2 管理员功能实现
管理员进入主页面,主要功能包括对用户、购物日志、系统简介、我的信息等进行操作。管理员主页面如图5-3所示:
图5-3 管理员主界面
用户功能在视图层(view层)进行交互,比如点击“查询、添加或删除”按钮或填写用户表单。这些用户表单动作被视图层捕获并作为请求发送给相应的控制器层(controller层)。控制器接收到这些请求后,调用服务层(service层)以执行相关的业务逻辑,例如验证输入数据的有效性和与数据库的交互。服务层处理完这些逻辑后,进一步与数据访问对象层(DAO层)交互,后者负责具体的数据操作如查看、修改或删除用户信息,并将操作结果返回给控制器。最终,控制器根据这些结果更新视图层,以便用户功能可以看到最新的信息或相应的操作反馈。如图5-4所示:
图5-4用户界面
购物日志功能在视图层(view层)进行交互,比如点击“查询、添加或删除”按钮或填写购物日志表单。这些购物日志表单动作被视图层捕获并作为请求发送给相应的控制器层(controller层)。控制器接收到这些请求后,调用服务层(service层)以执行相关的业务逻辑,例如验证输入数据的有效性和与数据库的交互。服务层处理完这些逻辑后,进一步与数据访问对象层(DAO层)交互,后者负责具体的数据操作如查看、修改或删除购物日志信息,并将操作结果返回给控制器。最终,控制器根据这些结果更新视图层,以便购物日志功能可以看到最新的信息或相应的操作反馈。如图5-5所示:
图5-5购物日志界面
管理员点击系统简介。进入系统简介页面输入标题可以查询系统简介信息,并进行查看或修改等操作。如图5-6所示:
图5-6系统简介界面
管理员进行爬取数据后可以在看板页面查看到系统简介、等实时的分析图进行可视化管理;看板大屏选择了Echart作为数据可视化工具,它是一个使用JavaScript实现的开源可视化库,能够无缝集成到Java Web应用中。Echart的强大之处在于其丰富的图表类型和高度的定制化能力,使得管理人员可以通过直观的图表清晰地把握冰箱的各项运营数据。
为了实现对冰箱信息的自动化收集和更新,我们采用了Apache Spark作为爬虫技术的基础。Spark的分布式计算能力使得系统能够高效地处理大规模数据,无论是从互联网上抓取最新的冰箱信息,还是对内部数据进行ETL(提取、转换、加载)操作,都能够保证数据的实时性和准确性。
在大数据分析方面,系统采用了Hadoop框架。Hadoop是一个能够处理大数据集的分布式存储和计算平台,它的核心是HDFS(Hadoop Distributed File System)和MapReduce计算模型。通过Hadoop,我们可以对收集到的大量数据进行存储和分析。如图5-7所示:
图5-7看板界面
5.3 用户功能实现
用户进入主页面,主要功能包括对购物日志、我的信息等进行操作。用户主页面如图5-8所示:
图5-8 用户主界面
用户点击购物日志。进入购物日志页面输入行为类型可以查询购物日志信息,并进行查看查看等操作。如图5-9所示:
图5-9购物日志界面
源码无偿分享,文未领取