系统设计高频题手写代码:从原理到实战的深度解析
引言
系统设计是后端开发中绕不开的硬核技能,尤其在分布式场景下,如何保证数据一致性、提升系统性能、确保服务高可用,成为面试和实际开发中的高频考点。本文基于CSDN技术社区的经典方案,结合手写代码和架构图,深度解析以下六大高频题:分布式锁、缓存雪崩、限流算法、分库分表、消息队列选型及系统设计图表应用。
一、分布式锁:Redisson实现与看门狗机制
问题场景
在高并发场景下,如何防止多个线程同时修改共享资源?
解决方案
Redisson分布式锁 + 看门狗自动续期
// 配置类
@Configuration
public class RedissonConfig {
@Bean
public RedissonClient redissonClient() {
Config config = new Config();
config.useSingleServer().setAddress("redis://127.0.0.1:6379");
return Redisson.create(config);
}
}
// 业务类
@Service
public class OrderService {
@Autowired
private RedissonClient redissonClient;
public void createOrder(String orderId) {
RLock lock = redissonClient.getLock("ORDER_" + orderId);
try {
// 尝试加锁,最多等待5秒
if (lock.tryLock(5, TimeUnit.SECONDS)) {
// 执行库存扣减等业务逻辑
inventoryService.deductStock(orderId);
}
} finally {
lock.unlock();
}
}
}
关键点解析
- 看门狗机制:默认锁续期30秒,业务未执行完会自动续期
- 双重保障:
tryLock
设置超时时间避免死锁,finally
块确保锁释放 - 性能优化:Redis单节点可达10万+ QPS,需监控网络延迟
二、缓存雪崩:布隆过滤器+空值缓存双保险
问题场景
大量缓存同时过期,导致数据库瞬间压力过大
解决方案
布隆过滤器拦截 + 空值缓存兜底
// 布隆过滤器初始化
RBloomFilter<String> bloomFilter = redisson.getBloomFilter("productFilter");
bloomFilter.tryInit(1_000_000L, 0.03)