二项分布[编辑]
机率 质量 函数 | |
累积分布函数 | |
参数 | ![]() ![]() |
---|---|
值域 | ![]() |
概率密度函数 | ![]() |
累积分布函数 | ![]() |
标记 | {{{notation}}} |
期望值 | ![]() |
中位数 | ![]() |
众数 | ![]() ![]() |
方差 | ![]() |
偏态 | ![]() |
峰态 | ![]() |
熵值 | ![]() |
动差生成函数 | ![]() |
特征函数 | ![]() |
在概率论和统计学中,二项分布是n个独立的是/非试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当n = 1时,二项分布就是伯努利分布。二项分布是显著性差异的二项试验的基础。
目录
[隐藏]详述[编辑]
概率质量函数[编辑]
一般地,如果随机变量服从参数为
和
的二项分布,我们记
或
.n次试验中正好得到k次成功的概率由概率质量函数给出:
对于k = 0, 1, 2, ..., n,其中
是二项式系数(这就是二项分布的名称的由来),又记为C(n, k), nCk,或nCk。该公式可以用以下方法理解:我们希望有k次成功(pk)和n − k次失败(1 − p)n − k。然而,k次成功可以在n次试验的任何地方出现,而把k次成功分布在n次试验中共有C(n, k)个不同的方法。
在制造二项分布概率的参考表格时,通常表格中只填上n/2个值。这是因为k > n/2时的概率可以从它的补集计算出:
因此,我们要看另外一个k和另外一个p(二项分布一般不是对称的)。然而,它的表现不是任意的。总存在一个整数M,满足
作为k的函数,表达式ƒ(k; n, p)当k < M时单调递增,k > M时单调递减,只有当(n + 1)p是整数时例外。在这时,有两个值使ƒ达到最大:(n + 1)p和(n + 1)p − 1。M是伯努利试验的最可能的结果,称为众数。注意它发生的概率可以很小。
累积分布函数[编辑]
累积分布函数可以表示为:
其中是小于或等于x的最大整数。
它也可以用正则化不完全贝塔函数来表示:
期望和方差[编辑]
如果X ~ B(n, p)(也就是说,X是服从二项分布的随机变量),那么X的期望值为
方差为
这个事实很容易证明。首先假设有一个伯努利试验。试验有两个可能的结果:1和0,前者发生的概率为p,后者的概率为1 − p。该试验的期望值等于μ = 1 · p + 0 · (1−p) = p。该试验的方差也可以类似地计算:σ2 = (1−p)2·p + (0−p)2·(1−p) = p(1 − p).
一般的二项分布是n次独立的伯努利试验的和。它的期望值和方差分别等于每次单独试验的期望值和方差的和:
众数和中位数[编辑]
通常二项分布B(n, p)的众数等于⌊(n + 1)p⌋,其中e ⌊ ⌋ 是取整函数。然而,当(n + 1)p是整数且p不等于0或1时,分布有两个众数:(n + 1)p和(n + 1)p − 1。当p等于0或1时,众数相应地等于0或 n。这些情况可以综述如下:
一般地,没有一个单一的公式可以求出二项分布的中位数,甚至中位数可能是不唯一的。然而有几个特殊的结果:
- 如果np是整数,那么平均数、中位数和众数相等,都等于np。[1][2]
- 任何中位数m都位于区间⌊np⌋ ≤ m ≤ ⌈np⌉内。[3]
- 中位数m不能离平均数太远:|m − np| ≤ min{ ln 2, max{p, 1 − p} }。[4]
- 如果p ≤ 1 − ln 2,或p ≥ ln 2,或|m − np| ≤ min{p, 1 − p}(除了p = ½、n是奇数的情况以外),那么中位数是唯一的,且等于m = round(np)。[3][4]
- 如果p = 1/2,且n是奇数,那么区间½(n − 1) ≤ m ≤ ½(n + 1)中的任何数m都是二项分布的中位数。如果p = 1/2且n是偶数,那么m = n/2是唯一的中位数。
两个二项分布的协方差[编辑]
如果有两个服从二项分布的随机变量X和Y,我们可以求它们的协方差。利用协方差的定义,当n = 1时我们有
第一项仅当X和Y都等于1时非零,而μX和μY分别为X = 1和Y = 1的概率。定义pB为X和Y都等于1的概率,便得到
对于n次独立的试验,我们便有
如果X和Y是相同的变量,便化为上面的方差公式。
与其他分布的关系[编辑]
二项分布的和[编辑]
如果X ~ B(n, p)和Y ~ B(m, p),且X和Y相互独立,那么X + Y也服从二项分布;它的分布为
伯努利分布[编辑]
伯努利分布是二项分布在n = 1时的特殊情况。X ~ B(1, p)与X ~ Bern(p)的意思是相同的。相反,任何二项分布B(n, p)都是n次独立伯努利试验的和,每次试验成功的概率为p。
泊松二项分布[编辑]
二项分布是泊松二项分布的一个特殊情况。泊松二项分布是n次独立、不相同的伯努利试验(pi)的和。如果X服从泊松二项分布,且p1 = … = pn =p,那么X ~ B(n, p)。
正态近似[编辑]
如果n足够大,那么分布的偏度就比较小。在这种情况下,如果使用适当的连续性校正,那么B(n, p)的一个很好的近似是正态分布
n越大(至少20),近似越好,当p不接近0或1时更好。[5]不同的经验法则可以用来决定n是否足够大,以及p是否距离0或1足够远:
- 一个规则是x=np和n(1 − p)都必须大于 5。
泊松近似[编辑]
当试验的次数趋于无穷大,而乘积np固定时,二项分布收敛于泊松分布。因此参数为λ = np的泊松分布可以作为二项分布B(n, p)的近似,如果n足够大,而p足够小。[6]
极限[编辑]
- 当n趋于∞而p固定时,
例子[编辑]
一个简单的例子如下:掷一枚骰子十次,那么掷得4的次数就服从n = 10、p = 1/6的二项分布。