排序:
默认
按更新时间
按访问量
RSS订阅

数学思想方法猜想与反驳(4)猜想能力的培养

1.用猜想学习新知识!    这是波利亚的呼吁,也是培养创造力的常用方法之一。只有经过自己猜想之后学习到的知识,才会印象深刻。中国教育的弊端就在于对猜想的扼杀,填鸭式的教育造就了无数高分低能的大学生。    猜想的好处有什么呢?    第一点,猜想可以帮助人深入地思考自己所学的知识。对于学习的积极...

2018-07-09 22:10:38

阅读数 67

评论数 0

数学思想方法猜想与反驳(2)类比猜想

    一.类比定义    所谓类比,是指由一类事物所具有的某种属性,可以推测与其类似的事物也具有这种属性的一种推理方法。波利亚曾经说过,“类比就是一种相似”。科学界有很多发明创造都是读自然界的一种类比,比如飞机和小鸟,雷达和蝙蝠等等。    但是,类比猜想的可靠性是不确定的。可以提高,但是仍然需...

2018-07-07 10:57:19

阅读数 136

评论数 0

数学思想方法猜想与反驳(3)反例反驳

    一.含义    提出一个问题虽然很重要,但是解决问题才是最重要的。人们提出猜想总是有两种可能:命题为真或者为假。一般的,人们运用三段论进行逻辑推理,来证明自己猜想的正确性。反驳则是寻找一个符合猜想条件的特例,特里的结论与猜想的结论发生冲突,从而证明猜想的不正确性。    二.反例反驳在学习...

2018-07-07 10:43:00

阅读数 102

评论数 0

数学思想方法猜想与反驳(1)归纳猜想

    数学问题的提出和解决是推动数学发展的重要力量,猜想和反驳是解决数学问题的一个重要思想方法。猜想是人们根据一定的经验材料和已知的事实对数学问题做出的推测性判断,可能为真,也可能为假。可以是演绎证明确认为真命题,或者举出反例判断其为假命题。数学猜想包括归纳猜想和类比猜想。    第一节 归纳猜...

2018-07-05 16:02:59

阅读数 214

评论数 0

数学思想方法之抽象与概括(2)概括

一.概括的含义    概括就是从个别到一般的认识过程,将同类事物的共同属性联接起来,或者是将个别事物的某些属性推广到同类事物中的思维方法。二.概括过程    概括可以分为经验概括和理论概括。    经验概括指的是从事实出发,以对个别事物所做的观察陈述为基础,上升为普遍的认识----个体到个体所属的...

2018-07-02 11:27:37

阅读数 408

评论数 0

数学思想方法之抽象与概括(1)抽象

        概述        抽象与概括是数学思想方法的最基本内容之一。        抽象指在认识事物的过程中,舍弃那些个别的、偶然的非本质属性,抽取普通的、必然的本质属性,形成科学概念,从而掌握事物的本质和规律。        概括指的是在认识事物的过程中,把所研究各部分事物得到的一般的...

2018-07-02 10:44:05

阅读数 1593

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭