剩余类(同余类):模n余k的所有数的集合(n,k皆为整数);
完全剩余系:从模n的所有剩余类中各取一个数构成的集合就是完全剩余系,
例如:模4,模4的余数只能是(0,1,2,3)对应的除数可以是(4,5,-2,11)《-2和11都可以是6,7》,所有(0,1,2,3)和(4,5,-2,11)为模4的完全剩余系;(不明:4,5,-2,11)是否是模4的完全剩余系)
简化剩余类(既约剩余系或缩系):模n的完全剩余系中与n互素(公约数为1的数)构成的子集。
例如:模15的简化剩余系:(1,2,4,7,8,11,13,14);
欧拉函数:公式:∮(n)=n*(1-1/p1)(1-1/p2)......(1-1/pn)
p为每个质因子(质因子如2,3,7,11,除了自身不能再被除的数);
n的所有质因子套入公式即可得出欧拉函数,重复也只需乘一次皆可。
例如:24=>2*2*2*3=>24*(1-

本文介绍了数论中的几个基本概念:剩余类、完全剩余系和简化剩余系,并通过具体例子解释了它们的含义。此外,还详细阐述了欧拉函数的定义及计算方法,并探讨了模指数、原根和逆元的概念,包括如何找到模m的指数、原根和求解逆元的方法。最后,给出了验证逆元存在的习题和解答。
最低0.47元/天 解锁文章
4669

被折叠的 条评论
为什么被折叠?



