人工智能导论-机器学习01

------------------------------------------------------------------分割线--------------------------------------------------

八数码的有无解问题

为了方便讨论,我们把它写成一维 的形式,并以0代替空格 位置。那么表示如下:

1 2 3 4 5 6 7 8 0

通过实验得知,以下状态是无解的(交换了前两个数字1 2):

2 1 3 4 5 6 7 8 0

八数码问题的有解无解的结论:

一个状态表示成一维的形式,求出除0之外所有数字的逆序数之和,也就是每个数字前面比它大的数字的个数的和,称为这个状态的逆序。

若两个状态的逆序奇偶性 相同,则可相互到达,否则不可相互到达。

由于原始状态的逆序为0(偶数),则逆序为偶数的状态有解。

也就是说,逆序的奇偶将所有的状态分为了两个等价类 ,同一个等价类中的状态都可相互到达。

简要说明一下: 当左右移动空格时,逆序不变。 当上下移动空格时,相当于将一个数字向前(或向后)移动两格,跳过 的这两个数字要么都比它大(小),逆序可能±2;要么一个较大一个较小,逆序不变。所以可得结论:只要是相互可达的两个状态,它们的逆序奇偶性相同。

------------------------------------------------------------------分割线--------------------------------------------------

-----------------------------------------------------分割线----------------------------------------------------------------

---------------------------------------------------------分割线-----------------------------------------------------------

证据理论:

    样本空间:设D是变量x所有可能取值的集合,且D中的元素是互斥的,在任一时刻x都取且只能取D中某一元素为值,就称D为x的样本空间。

------------------------------------------分割线----------------------------------------------------------------------------

证据肯定存在时
引入几率函数Θ(x),它与概率的关系为: Θ(x)=P(x)/(1-P(x)), P(x)=Θ(x)/(1+Θ(x)) 在证据肯定存在时,P(E)=P(E|S)=1。
由Bayes公式得: P(H|E)=P(E|H)×P(H)/P(E) (1)

                       P(¬H|E)=P(E|¬H)×P(¬H)/P(E)        (2)

    1

(1)式除以(2)式得: P(H|E)/P(¬H|E)=P(E|H)/P(E|¬H)×P(H)/P(¬H)
由LS和几率函数的定义得: Θ(H|E)=LS×Θ(H) 即 P(H|E)=LS×P(H) / [(LS-1)×P(H)+1]

证据肯定不存在时
在证据肯定不存在时,P(E)=P(E|S)=0, P(¬E)=1。
由Bayes公式得: P(H|¬E)=P(¬E|H)×P(H)/P(¬E) (1)

                       P(¬H|¬E)=P(¬E|¬H)×P(¬H)/P(¬E)        (2)

    1

(1)式除以(2)式得: P(H|¬E)/P(¬H|¬E)=P(¬E|H)/P(¬E|¬H)×P(H)/P(¬H)
由LN和几率函数的定义得: Θ(H|¬E)=LN×Θ(H) 即 P(H|¬E)=LN×P(H) / [(LN-1)×P(H)+1]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值