Tensorflow与深度学习
文章平均质量分 74
Michael_Shentu
感兴趣方向:分布式计算与存储,广告计算学,分布式数据挖掘与机器学习,Hadoop,Spark,HBase
展开
-
tensorflow各版本间踩过的坑
问题一:TypeError: Expected int32, got list containing Tensors of type ‘_Message’ instead.tensorflow 函数tf.cocat([fw,bw],2)出错:Expected int32, got list containing Tensors of type ‘_Message’ inst 查转载 2017-08-16 16:01:41 · 3944 阅读 · 0 评论 -
Variable 与 placeholder 之间的区别 + feed_dict
tf.Variable:主要在于一些可训练变量(trainable variables),比如模型的权重(weights,W)或者偏执值(bias);声明时,必须提供初始值;名称的真实含义,在于变量,也即在真实训练时,其值是会改变的,自然事先需要指定初始值; weights = tf.Variable( tf.truncated_normal([IMAGE_PIXELS, hi转载 2018-01-05 13:47:30 · 875 阅读 · 0 评论 -
tf.get_variable() vs tf.Variable(),tf.name_scope() vs tf.variable_scope()
scope 命名方法对于一个复杂的 tensorflow 模型会有很多个变量, tf.variable_scope() :提供了简单的命名空间技术以避免冲突;tf.get_variable():从同一个变量范围内获取或者创建;见名知意,tf.Variable() variable 且以大写字母开头,该函数在于定义一个变量;tf.get_variable():可根据 name 值转载 2018-01-23 16:08:17 · 306 阅读 · 0 评论 -
充分理解 name_scope 和 variable_scope
之前写过一个例子了: TensorFlow入门(四) name / variable_scope 的使用 但是当时其实还对 name / variable_scope 不是非常理解。* 起因:在运行 RNN LSTM 实例代码的时候出现 ValueError。 * 在 TensorFlow 中,经常会看到这 name_scope 和 variable_scope 两个东东出现,这到底是转载 2018-01-23 16:10:17 · 3786 阅读 · 0 评论 -
LSTMCell 源码解析
相比于BasicLSTMCell, input_size 与 num_hidden 在LSTMCell中 并没有要求是相同的, LSTMCell根据输入向量大小input_size 来确定每个门对应的 隐含层神经元的全连接参数矩阵w以及bias参数的维度, 最终lstm cell的输出维度 等于 num_hidden, 具体物理架构图 参照另一篇 lstm网络的实际物理架构图在上图中,可以看到 实...原创 2018-02-26 12:42:23 · 1493 阅读 · 0 评论 -
Tensorflow中RNN以及衍生RNN的源码
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may o...原创 2018-02-26 17:45:56 · 845 阅读 · 0 评论 -
LSTM 实际神经元隐含层物理架构原理解析
最近看一些基于LSTM网络的NLP案例代码,其中涉及到一些input_size, num_hidden等变量的时候,可能容易搞混,首先是参照了知乎上的一个有关LSTM网络的回答https://www.zhihu.com/question/41949741, 以及github上对于LSTM比较清晰的推导公式http://arunmallya.github.io/writeups/nn/lstm/in...原创 2018-02-27 17:36:00 · 8946 阅读 · 2 评论 -
Tensorflow中的seq2seq 应用
转载了另一篇博客文章: http://blog.csdn.net/wuzqchom/article/details/76651479, 而有关TensorFlow中 seq2seq的源码解析可以参考: https://zhuanlan.zhihu.com/p/27769667首先大致说下seq2seq, encoder-decoder, attention 之间的关系:seq2seq 指的是序列到...转载 2018-03-02 15:27:07 · 1773 阅读 · 0 评论 -
线性可分 非线性可分 与 SVM 人工神经网络之间的关系详解
https://www.jianshu.com/p/491f0e2ef781在此之前, 我们在讨论分类问题时有个隐含的前提条件: 样本是线性可分的. 所谓的样本线性可分, 是指存在一个超平面可将其正确分类. 然而, 在实际场景中, 原始样本空间也许就不存在这样的超平面, 如异或逻辑分布的样本就不是线性可分的.线性分类器并不能处理非线性可分的数据. 不过, 如果原始样本是有限维, 那一定存在一个高维...原创 2018-06-29 17:38:12 · 95 阅读 · 1 评论 -
Tensorflow系列——Saver的用法
Saver的用法1. Saver的背景介绍 我们经常在训练完一个模型之后希望保存训练的结果,这些结果指的是模型的参数,以便下次迭代的训练或者用作测试。Tensorflow针对这一需求提供了Saver类。Saver类提供了向checkpoints文件保存和从checkpoints文件中恢复变量的相关方法。Checkpoints文件是一个二进制文件,它把变量名映射到对应的tensor...原创 2018-08-08 12:58:25 · 51 阅读 · 1 评论 -
卷积神经网络(CNN)学习笔记1:基础入门
概述卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的。CNN相较于传统的图像处理算法的优点之一在于,避免了对图像复杂的前期预处理过程(提取人工特征等),可以直接输入原始图像。图像处理中,往往会将图像看成是一个或转载 2018-01-03 19:56:10 · 485 阅读 · 0 评论 -
TensorFlow学习笔记2:构建CNN模型
深度学习模型TensorFlow很适合用来进行大规模的数值计算,其中也包括实现和训练深度神经网络模型。下面将介绍TensorFlow中模型的基本组成部分,同时将构建一个CNN模型来对MNIST数据集中的数字手写体进行识别。基本设置在我们构建模型之前,我们首先加载MNIST数据集,然后开启一个TensorFlow会话(session)。加载MNIST数据集Te转载 2018-01-03 19:54:00 · 1189 阅读 · 0 评论 -
tensorflow的运行流程与核心关键概念含义介绍
1.tensorflow的运行流程tensorflow的运行流程主要有2步,分别是构造模型和训练。在构造模型阶段,我们需要构建一个图(Graph)来描述我们的模型。所谓图,也可以理解为流程图,就是将数据的输入->中间处理->输出的过程表示出来,就像下面这样。 注意此时是不会发生实际运算的。而在模型构建完毕以后,会进入训练步骤。此时才会有实际的数据输入,梯转载 2017-08-14 20:47:26 · 777 阅读 · 0 评论 -
变量更新和控制依赖
变量更新到目前为止,我们已经将变量专门用于我们模型中的一些权重,这些权重将根据优化器的操作进行更新操作(如:Adam)。但是优化器并不是更新变量的唯一方法,还有别的一整套更高级的函数可以完成这个操作(你将再次看到,这些更高级的函数将作为一种操作添加到你的图中)。最基本的自定义更新操作是 tf.assign() 操作。这个函数需要一个变量和一个值,并将值分配给这个变量,非常简单吧。转载 2017-08-15 10:56:24 · 524 阅读 · 0 评论 -
如何用 TensorFlow 实现基于 LSTM 的文本分类
引言学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实例,这个星期就用tensorflow实现了一下,感觉和之前使用的theano还是有很大的区别,有必要总结mark一下。 模型说明这个分类的模型其实也是很简单,主要就是一个单层的LSTM模型,当然也可以实现多层的模型,多层的模型使用Tensorflow尤其简转载 2017-08-15 11:43:02 · 780 阅读 · 0 评论 -
tf.train中的Optimizer相关的函数与功能介绍
摘要:本系列主要对tf的一些常用概念与方法进行描述。本文主要针对tensorflow的模型训练Training与测试Testing等相关函数进行讲解。为‘Tensorflow一些常用基本概念与函数’系列之四。1、序言本文所讲的内容主要为以下列表中相关函数。函数training()通过梯度下降法为最小化损失函数增加了相关的优化操作,在训练过程中,先实例化一个优化函数,比如 tf.tr原创 2017-08-14 20:50:05 · 62137 阅读 · 2 评论 -
tensorflow中optimizer如何实现神经网络的权重,偏移等系数的更新和梯度计算
案例代码:#建立抽象模型x = tf.placeholder(tf.float32, [None, 784])y = tf.placeholder(tf.float32, [None, 10]) #实际分布的概率值w = tf.Variable(tf.zeros([784, 10]))b = tf.Variable(tf.zeros(10))a = tf.原创 2017-08-15 17:33:10 · 3901 阅读 · 1 评论 -
BasicLSTMCell源码分析
class BasicLSTMCell(RNNCell): """Basic LSTM recurrent network cell. The implementation is based on: http://arxiv.org/abs/1409.2329. We add forget_bias (default: 1) to the biases of the forget原创 2018-01-11 11:50:31 · 874 阅读 · 0 评论 -
长短时记忆网络(LSTM)的内部结构详解以及基于python 的实现案例
具体可参考转载的 零基础入门深度学习https://www.zybuluo.com/hanbingtao/note/581764转载 2018-01-11 15:01:04 · 6299 阅读 · 0 评论 -
tensorflow学习笔记--embedding_lookup()用法
embedding_lookup( )的用法 关于tensorflow中embedding_lookup( )的用法,在Udacity的word2vec会涉及到,本文将通俗的进行解释。首先看一段网上的简单代码:#!/usr/bin/env/python# coding=utf-8import tensorflow as tfimport numpy as npinput_转载 2018-01-11 16:26:57 · 1369 阅读 · 0 评论 -
一个快速完整的教程,以保存和恢复Tensorflow模型。
转发至:https://blog.csdn.net/tan_handsome/article/details/79303269在本教程中,我将会解释:TensorFlow模型是什么样的? 如何保存TensorFlow模型? 如何恢复预测/转移学习的TensorFlow模型? 如何使用导入的预先训练的模型进行微调和修改?这个教程假设你已经对神经网络有了一定的了解。如果不了解...原创 2018-08-08 15:05:58 · 73 阅读 · 1 评论
分享