【Pytorch项目实战】之自然语言处理:RNN、LSTM、GRU、Transformer
于 2023-01-28 20:26:22 首次发布
本文介绍了RNN、LSTM、GRU和Transformer在自然语言处理中的应用。RNN解决了序列数据处理的问题,但存在梯度消失问题;LSTM通过门控机制缓解此问题;GRU作为LSTM的简化版,效率更高;Transformer通过Self-Attention机制实现并行化训练,提高了模型性能。并提供了基于LSTM预测股票行情的实战例子。

订阅专栏 解锁全文
1166

被折叠的 条评论
为什么被折叠?



