机器学习笔记之模型评估与选择

2.1经验误差与过拟合

错误率(error rate):分类错误的样本数占样本总数的比例

精度(accuracy):1-错误率

误差(error):实际预测输出与样本的真实输出之间的差异

训练误差/经验误差:在训练集上的误差

测试误差/泛化误差:在新样本的误差

过拟合:学习时选择的模型包含的参数过多,对已知数据预测的很好,但对未知数据预测的很差,即泛化能力很差。

产生过拟合的原因:学习能力强大。

过拟合无法彻底避免,只能采取措施缓解,或者说减小其风险。

2.2评估方法

对数据集D进行适当处理,产生训练集S和测试集T。

2.2.1留出法(hold-out)

将数据集D划分为两个互斥的集合,尽可能保持数据分布的一致性。

2.2.2交叉验证法(cross validation)

将数据集D划分为k个大小相似的互斥子集,每次用k-1个子集的并集作为训练集,余下的那个子集作为测试集。

2.2.3自助法(bootstrapping)

2.2.4调参(parameter tuning)

算法的参数,称为超参数,10个以内;模型的参数,数目很多。

2.3性能度量(performance measure)

评估学习器f的性能,把学习器预测结果f(x)与真实标记y进行比较。

回归任务,最常用的是均方误差。

分类任务,常见的如下:

2.3.1错误率与精度

2.3.2查准率与查全率

查准率,又称精确率,presion,用P表示,精确率是针对我们预测结果而言的,它表示的是预测为正的样本中有多少是真正的正样本。那么预测为正就有两种可能了,一种就是把正类预测为正类(TP),另一种就是把负类预测为正类(FP),也就是(你的预测有多少是对的)


查全率,又称召回率,recall,用R表示,召回率是针对我们原来的样本而言的,它表示的是样本中的正例有多少被预测正确了。那也有两种可能,一种是把原来的正类预测成正类(TP),另一种就是把原来的正类预测为负类(FN)。(正例里你的预测覆盖了多少)


PR曲线,平衡点BEP

2.5偏差与方差

泛化误差可以分解为偏差、方差、噪声之和。

偏差刻画了学习算法本身的拟合能力;方差刻画了数据扰动所造成的影响;噪声刻画了学习问题本身的难度。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值