开源项目推荐——OpenDroneMap无人机影像数据处理

实景三维作为GIS最火的课题,最近在想做一套自己的三维构建工具,考察了几个开源项目,把自己的搜索过程用csdn记录下来,希望也能帮助到各位同仁。

OpenDroneMap(ODM)是一个开源项目,旨在处理无人机拍摄的影像数据,并将其转化为可用的地理信息产品。它提供了一整套工具,用于生成从无人机摄影获取的3D模型、正射影像(orthophotos)、高程模型等。

这个ODM的开源项目没见过有人推荐,不知道效果怎么样。

国内的话,湖北武汉的大势智慧公司的桌面软件——重建大师,可以对大疆无人机等做很好的兼容,允许用户把无人机机场连接到该软件,并读取无人机轨迹以及无人机航拍影像到系统内,进行三维重建。

也可以在软件规划并设计无人机飞线路径,让无人机自动飞行,飞行完成数据也直接存入系统服务器,再进行三维重建。个人觉得很好的功能。

以下是对ODM的详细介绍:

3D效果

正射影像生成

### 无人机达北杯DEM生产步骤指南 #### 准备工作 为了参与无人机达北杯的数字高程模型(DEM)生产竞赛,参赛者需准备高质量的无人机图像数据。这些图像应覆盖目标区域,并具备足够的重叠度以确保后续处理的质量[^1]。 #### 数据采集 利用配备有GPS模块和支持地理标记功能的无人机设备进行航拍作业。飞行规划软件可以帮助设定合理的航线参数,如飞行高度、速度以及拍摄间隔等,从而获取满足比赛要求的照片素材集合。 #### 图像预处理 收集到的原始图片可能含有噪声或畸变,在正式进入建模流程前建议先对其进行必要的校正操作。这一步骤通常涉及去除模糊不清的画面片段、调整色彩平衡等方面的工作,目的是提高最终成果的真实性和准确性。 #### 构建三维点云 借助专业的摄影测量学工具——OpenDroneMap (ODM),能够自动完成从二维照片向三维坐标系内离散点阵列转化的过程。该平台支持多源异构输入格式,兼容市面上主流品牌的相机所摄制的作品;同时提供了灵活的任务调度机制来加速运算效率。 ```bash docker run -it --rm \ -v /path/to/your/images:/code/images \ opendronemap/opendronemap ``` 上述命令展示了如何使用Docker容器运行ODM环境并对本地存储路径下的影像资料实施批量加工指令序列。 #### 制作DEM 当获得稠密化的点云集之后,则可进一步构建出精确反映地面起伏状况的地图产品即为DEM。此时不仅限于单一视角下的简单拼接合成方式,而是综合考虑了不同角度间的相对关系来进行全方位重建,使得生成物更加贴近实际地貌特征[^2]。 对于具体的实现细节而言,存在专门针对此类任务优化过的开源库可供选用,比如前述提及的支持多种标准规范的数据集互转框架就非常适合用来执行这项使命[^3]: ```python from dem_toolkit import DEMProcessor processor = DEMProcessor('input_dem_file.tif') output_path = processor.process_and_export() print(f'DEM processed and saved to {output_path}') ``` 这段代码说明了怎样调用`dem_toolkit`中的类实例化对象去加载指定文件作为待处理资源,并经过一系列内部算法逻辑计算后输出至新的位置保存下来。 #### 成果导出 最后阶段便是按照赛事规定的形式提交作品。一般情况下会涉及到将所得DEM转换成通用图形交换格式(GeoTIFF),以便评委们可以直接打开查看效果而不必担心版本兼容性等问题。部分高级编辑器还允许自定义设置分辨率大小、压缩比率等属性选项,以此提升视觉呈现质量[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值