转自 https://www.guokr.com/question/501057/
幂并非外来术语,其原意为盖东西的方布。
《九章算数》第一章《方田》中的第二个问题如下:
又有田广十二步,从十四步。问为田几何?
答曰:一百六十八步。
方田术曰:广从步数相乘得积步。
所谓方田就是矩形的田,广是宽度,从是高度。
对于这条问题,三国时
刘徽注解道:
此积谓
田幂。凡广从相乘谓之 幂。
所以至少从三国时期,幂可以表示长宽相乘。
唐李淳风则对刘徽注又有阐述说:
经云广从相乘得积步,注云“广从相乘谓之幂”。观斯注意,积幂义同。以理推之,固当不尔。何则?幂是方面单布之名,积乃众数聚居之称。循名责实,二者全殊。虽欲同之,窃恐不可。今以凡言幂者据广从之一方;其言积者举众步之都数。经云相乘得积步,即是都数之明文。注云谓之为幂,全乖积步之本意。此注前云积为田幂,于理得通。复云谓之为幂,繁而不当。今者注释,存善去非,略为料简,遗诸后学。
李淳风认为,既然幂是方布,所以把面积叫做田幂是合理的,但是把幂定义为是不妥当的。可见从三国到唐,幂表示长宽相乘的含义并不是被广泛接受的。
徐光启于明朝万历年间翻译《几何原本》时,使用了“幂”字,并对“幂”的含义进行了修订。他自注说:
自乘之数曰幂。
这就相当于定义幂为了。