在学术论文中,"复现"通常对应的术语是 reproducibility 或 reproduction,但这两个词在不同的上下文中有不同的含义。以下是它们的区别:
1. Reproducibility(可复现性)
- 定义:指在相同的条件下,使用相同的数据和代码,其他研究者能够获得与你相同的结果。
- 用法:常用于描述在同样的数据集和代码基础上,其他人可以重复你的实验并得到相同的结果。
- 适用场景:更多用于强调实验结果的一致性和科学研究的透明性,尤其是当研究者在不同环境下使用相同的代码和数据集时。
- 例句:
- “The reproducibility of our results is ensured by sharing the full dataset and source code.”
- “我们的研究结果的可复现性通过共享完整数据集和源代码得到了保障。”
2. Reproduction(复现)
- 定义:指在不同的条件下(例如使用不同的数据集、不同的方法)重复实验,验证是否能得到相似的结果。
- 用法:通常用于更广泛的场景,指在某些变动的前提下重复实验,甚至是用不同的方法或数据进行验证。
- 适用场景:常见于验证某一方法或理论在不同环境或条件下的稳健性。
- 例句:
- “The reproduction of these results in a different context proves the robustness of the method.”
- “在不同环境下复现这些结果证明了该方法的稳健性。”
总结:
- 如果你想强调在相同的条件下,他人可以使用相同的数据和方法获得相同的结果,应使用 reproducibility。
- 如果你讨论的是在不同的条件或背景下重复实验验证结果的稳健性,使用 reproduction 会更合适。
在学术论文中,reproducibility 更常见,因为它强调实验结果在相同条件下的可靠性和一致性。
后记
2024年9月25日15点56分于上海。今天阅读论文的时候,看到了reproducibility一词,然后想到我们一个项目Github中的复现用了reproduction一词,于是决定查询一下。GPT4o给我的答复是reproducibility更好一点。
1602

被折叠的 条评论
为什么被折叠?



