Machine Learning
文章平均质量分 91
机器学习基础。Andrew Ng的机器学习专项课程笔记更新完结。
阿正的梦工坊
岁月不饶人,我亦未曾饶过岁月
展开
-
机器学习专项课程03:Unsupervised Learning, Recommenders, Reinforcement Learning笔记 Week01
第一周的字幕,quiz的答案以及作业的代码原创 2024-02-28 15:51:57 · 1098 阅读 · 0 评论
-
Coursera吴恩达机器学习专项课程02:Advanced Learning Algorithms 笔记 Week01
第一周的笔记,字幕,quiz的答案,lab的代码原创 2024-02-26 14:05:39 · 1012 阅读 · 0 评论
-
Coursera吴恩达机器学习专项课程01:Supervised Machine Learning: Regression and Classification笔记 Week01
Supervised Machine Learning: Regression and Classification第一周的课程笔记原创 2024-02-25 14:11:51 · 1705 阅读 · 3 评论
-
Wishart分布与高斯协方差矩阵的贝叶斯推断: Wishart Distribution and Gaussian Covariance Matrix in Bayesian Inference
This example demonstrates how to infer the covariance matrix of a Gaussian distribution in a Bayesian framework, highlighting the role of the Wishart distribution as a conjugate prior.原创 2024-12-02 15:24:25 · 345 阅读 · 0 评论 -
多维高斯分布均值向量的推断: 一个经典的共轭分布应用案例 (中英双语)
This article demonstrated the Bayesian inference process for the mean vector of a multivariate Gaussian distribution and highlighted the importance of conjugate priors.原创 2024-12-02 15:03:17 · 613 阅读 · 0 评论 -
以狄利克雷分布与多项分布(Dirichlet Distribution and Multinomial Distribution)为例解释共轭分布:中英双语
The conjugate relationship between the Dirichlet distribution and multinomial distribution provides a simple and efficient Bayesian inference framework for modeling categorical probabilities.原创 2024-12-02 14:39:28 · 582 阅读 · 0 评论 -
Beta分布与二项分布的共轭关系详解: the Conjugacy Between Beta Distribution and Binomial Distribution
In Bayesian statistics, the Beta distribution and Binomial distribution form one of the most classic conjugate prior-posterior pairs.原创 2024-12-02 14:09:55 · 501 阅读 · 0 评论 -
共轭分布(Conjugate Distribution)和共轭先验(Conjugate Prior):简化贝叶斯推断的利器(中英双语)
A conjugate distribution is a type of prior distribution that, when combined with a specific likelihood function, results in a posterior distribution that has the same form as the prior.原创 2024-12-02 13:44:39 · 1586 阅读 · 0 评论 -
频率学派(Frequentism)和 贝叶斯学派(Bayesianism):两种概率观的比较与机器学习中的应用 (中英双语)
The Bayesian approach provides a flexible and systematic way to incorporate prior knowledge and beliefs, which can be incredibly useful when data is scarce or uncertain.原创 2024-12-02 13:15:38 · 642 阅读 · 0 评论 -
指数族分布(Exponential Family Distribution)详解及其应用: 中英双语
This article introduces the background, properties, and real-world applications of exponential family distributions, illustrated through examples such as univariate and multivariate Gaussian distributions, Dirichlet distribution, and Wishart distribution.原创 2024-12-01 22:40:22 · 834 阅读 · 0 评论 -
最大似然估计:求解指数族分布的参数 ( η) 具有封闭解 (中英双语)
In exponential family distributions, due to the linear relationship between the log-likelihood function and the sufficient statistic, Maximum Likelihood Estimation (MLE) often has a closed-form solution.原创 2024-12-01 22:25:57 · 764 阅读 · 0 评论 -
支持向量机(SVM)的解析与应用:从封闭解到时代演变 (中英双语)
Thanks to the closed-form expression of the kernel matrix, the gradient of the objective function in the dual form of SVM can be computed efficiently. This avoids the need for complicated numerical optimization procedures原创 2024-12-01 22:03:27 · 880 阅读 · 0 评论 -
封闭解(Closed-Form Solution)与复杂数值优化(Complex Numerical Optimization)的比较:中英双语
Closed-form solutions play a vital role in simplifying and solving problems in mathematics, statistics, and machine learning. They provide precise results with minimal computational cost, making them indispensable for problems where they are applicable.原创 2024-12-01 21:37:30 · 493 阅读 · 0 评论 -
充分统计量(Sufficient Statistic)概念与应用: 中英双语
A sufficient statistic is a function of a dataset that captures all the information about a parameter of interest contained within the data.原创 2024-12-01 20:32:25 · 1050 阅读 · 0 评论 -
指数族分布(Exponential Family of Distributions)的两种形式及其区别
In statistics, the Exponential Family of Distributions is a widely used and mathematically convenient class of distributions that includes many common ones, such as the normal, binomial, and Poisson distributions.原创 2024-12-01 20:20:29 · 872 阅读 · 0 评论 -
深入理解学生氏分布(Student‘s t-Distribution)以及柯西分布、高斯分布与学生氏分布的关系
t分布最初由英国统计学家戈塞特(William Sealy Gosset)提出,目的是为了解决小样本情况下的统计推断问题。它的长尾特性允许分布对离群点更加鲁棒,成为了处理小样本数据、异常值和不确定性问题的重要工具。原创 2024-12-01 19:46:37 · 910 阅读 · 0 评论 -
高斯-威沙特分布(Gaussian-Wishart Distribution)详解:基于多维高斯分布(Multivariate Gaussian Distribution)中英双语
A Detailed Guide to the Gaussian-Wishart Distribution: Background, Application, and Mathematical Formulation原创 2024-12-01 19:19:26 · 799 阅读 · 0 评论 -
高斯-伽玛分布(Gaussian-Gamma Distribution):在均值和方差都未知时的贝叶斯推断 (中英双语)
Gaussian-Gamma Distribution: Bayesian Inference with Unknown Mean and Variance原创 2024-12-01 11:31:00 · 592 阅读 · 0 评论 -
偏差-方差权衡(Bias–Variance Tradeoff):理解监督学习中的核心问题
模型的误差并非只有一个来源,而是可以分解为三部分:不可约误差(Irreducible Error)、偏差(Bias) 和 方差(Variance)。原创 2024-11-30 15:43:50 · 1144 阅读 · 0 评论 -
什么是有参模型(Parametric Model)和非参模型(Non-parametric Model)?
有参模型通过有限的参数数量来定义模型,而非参模型通过数据本身或无固定数量的参数来描述问题。原创 2024-11-30 15:25:40 · 756 阅读 · 0 评论 -
多维高斯分布(Multivariate Gaussian Distribution)以及协方差矩阵:解析与应用
协方差矩阵的值:决定了马氏距离的尺度和方向敏感性。分布形状的建模:通过调整协方差矩阵,可以控制分布的拉伸和旋转,以更精确地拟合数据。原创 2024-11-30 15:11:17 · 1105 阅读 · 0 评论 -
NLP中的主题模型:LDA(Latent Dirichlet Allocation, 潜在狄利克雷分配)
主题模型是一种用于发现文档集合中潜在主题的概率生成模型。其中,LDA(Latent Dirichlet Allocation, 潜在狄利克雷分配)是最著名的主题模型之一。在 LDA 中,狄利克雷分布起到了核心作用,用于建模文档-主题分布和主题-单词分布。原创 2024-11-30 13:37:26 · 1161 阅读 · 0 评论 -
深入理解:狄利克雷分布(Dirichlet Distribution)
狄利克雷分布是多项分布参数的先验分布,在贝叶斯统计和机器学习中扮演着重要角色原创 2024-11-30 12:25:15 · 797 阅读 · 0 评论 -
深入理解:卡方分布(Chi-squared distribution)与伽马分布(Gamma Distribution)的关系
伽马分布是一个通用的分布,广泛用于描述随机变量的总和;卡方分布是伽马分布的特例,专注于正态变量平方和的情形;原创 2024-11-30 11:53:38 · 888 阅读 · 0 评论 -
威沙特分布(Wishart Distribution)和伽马分布(Gamma Distribution)的关系和使用场景
伽马分布描述的是一维随机变量的分布,而威沙特分布则描述协方差矩阵的分布。它们的联系可以看作是一种从标量到矩阵的推广过程。原创 2024-11-30 11:44:51 · 760 阅读 · 0 评论 -
SGD、RMSProp 和 Adam 优化器的区别及训练显存消耗分析:以LLaMA-2 7B为例(中英双语)
A Detailed Analysis of SGD, RMSProp, and Adam Optimizers, and Their Memory Consumption原创 2024-11-30 09:06:31 · 621 阅读 · 0 评论 -
Adam与RMSProp优化器的区别以及训练显存消耗(以LLaMA-2 7B为例):中英双语
Both aim to improve training efficiency by adapting learning rates for each parameter, but they do so in different ways.原创 2024-11-30 09:05:38 · 809 阅读 · 0 评论 -
Adam 和 AdamW 优化器详解及其训练显存需求分析:以LLaMA-2 7B为例(中英双语)
Detailed Analysis of Adam and AdamW Optimizers and Their Memory Consumption with float32 and bfloat16 Precision原创 2024-11-30 09:03:46 · 968 阅读 · 0 评论 -
深入了解 Adam 优化器对显存的需求:以 LLaMA-2 7B 模型为例 (中英双语)
Understanding the Additional Memory Requirements of Adam Optimizer: Memory Consumption Breakdown for Model Parameters and Optimizer States原创 2024-11-30 09:02:14 · 1212 阅读 · 0 评论 -
课程学习 (Curriculum Learning) 介绍及其在 DeepSpeed 框架中的应用:中英双语
Curriculum learning aims to improve the learning efficiency of models by gradually increasing the difficulty of the training tasks.原创 2024-11-29 14:44:19 · 1053 阅读 · 0 评论 -
贝叶斯统计:高斯分布均值μ的后验分布推导
在贝叶斯统计中,后验分布表示在观察到数据后,对参数的更新后的信念。原创 2024-11-28 15:56:18 · 1029 阅读 · 0 评论 -
似然分布(Likelihood Distribution)和似然函数(Likelihood Function)有什么区别?中英双语
Both involve the probability of data given a set of parameters, but they are used in different contexts and have distinct meanings.原创 2024-11-28 15:52:56 · 799 阅读 · 0 评论 -
贝叶斯统计的核心思想与基础知识:中英双语
Bayesian statistics is a framework that uses Bayes' theorem to update our beliefs about parameters or models based on observed data.原创 2024-11-28 15:28:48 · 894 阅读 · 0 评论 -
KL散度改写为一个可用于优化的形式
KL散度(Kullback-Leibler Divergence)可衡量两个概率分布之间差异原创 2024-11-27 15:34:03 · 913 阅读 · 0 评论 -
大模型论文中出现的held-out evaluations是什么?
By using a held-out set, we ensure that the evaluation results are reliable and not influenced by overfitting to the training or development data.原创 2024-11-25 15:50:19 · 882 阅读 · 0 评论 -
机器学习中数据集Upsampling和Downsampling是什么意思?中英文介绍
upsampling and downsampling refer to adjusting the number of samples in a dataset原创 2024-11-25 15:16:51 · 736 阅读 · 0 评论 -
【机器学习】近似分布的熵到底是p(x)lnq(x)还是q(x)lnq(x)?
信息论和机器学习原创 2024-11-21 21:04:41 · 817 阅读 · 0 评论 -
中英双语简单介绍:字典学习(Dictionary Learning)
A dictionary is a set of basic elements, typically represented as a matrix, where each column is a basic element (or atom). These dictionary atoms are the fundamental components used to construct the original data.原创 2024-07-27 15:39:54 · 852 阅读 · 0 评论 -
机器学习专项课程03:Unsupervised Learning, Recommenders, Reinforcement Learning笔记 Week03 (完结)
第三周的字幕,quiz的答案以及作业的代码。完结撒花。原创 2024-03-01 17:39:08 · 1226 阅读 · 0 评论 -
机器学习专项课程03:Unsupervised Learning, Recommenders, Reinforcement Learning笔记 Week02
第二周的字幕,quiz的答案以及作业的代码原创 2024-02-29 22:28:33 · 984 阅读 · 2 评论
分享