求两个数互质算法

用欧几里德算法(辗转相除法)求两个数的最大公约数的步骤如下:
先用小的一个数除大的一个数,得第一个余数;
再用第一个余数除小的一个数,得第二个余数;
又用第二个余数除第一个余数,得第三个余数;
这样逐次用后一个数去除前一个余数,直到余数是0为止。那么,最后一个除数就是所求的最大公约数(如果最后的除数是1,那么原来的两个数是互质数)。 
 void f(const int m,const int n)
 {
  int d1,d2,d3=1;
  if(m<=n)                      //将小数放到d1中
  {
   d1=m;
   d2=n;
  }
  else
  {
   d1=n;
   d2=m;
  }
  while(d3!=0)
  {
   d3=d2%d1;
   d2=d1;
   d1=d3;
  }
  cout<<m<<"和"<<n<<"最大公约数是:"<<d2<<endl;

if(d2==1)cout<<m<<"和"<<n<<"互质"<<endl;
  else cout<<m<<"和"<<n<<"不互质"<<endl;

}

阅读更多
文章标签: 算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭