红黑树的五条规则
红黑树除了符合二叉搜索树的基本规则外,还添加了以下特性:
- 规则1:节点是红色或黑色的;
- 规则2:根节点是黑色的;
- 规则3:每个叶子节点都是黑色的空节点(NIL节点);
- 规则4:每个红色节点的两个子节点都是黑色的(从每个叶子到根的所有路径上不可能有两个连续的红色节点);
- 规则5:从任一节点到其每个叶子节点的所有路径都包含相同数目的黑色节点;

红黑树的相对平衡
前面5条规则的约束确保了以下红黑树的关键特性:
- 从根到叶子节点的最长路径,不会超过最短路径的两倍;
- 结果就是这棵树基本是平衡的;
- 虽然没有做到绝对的平衡,但是可以保证在最坏的情况下,该树依然是高效的;
为什么可以做到最长路径不超过最短路径的两倍呢?
- 性质4决定了路径上不能有两个相连的红色节点;
- 所以,最长路径一定是红色节点和黑色节点交替而成的;
- 由于根节点和叶子节点都是黑色的,最短路径可能都是黑色节点,并且最长路径中一定是黑色节点多于红色节点;
- 性质5决定了所有路径上都有相同数目的黑色节点;
- 这就表明了没有路径能多于其他任何路径两倍长。
红黑树的三种变换
插入一个新节点时,有可能树不再平衡,可以通过三种方式的变换使树保持平衡:
- 变色;
- 左旋转;
- 右旋转;
2.1.变色
为了重新符合红黑树的规则,需要把红色节点变为黑色,或者把黑色节点变为红色;
插入的新节点通常都是红色节点:
-
当插入的节点为红色的时候,大多数情况不违反红黑树的任何规则;
-
而插入黑色节点,必然会导致一条路径上多了一个黑色节点,这是很难调整的;
-
红色节点虽然可能导致红红相连的情况,但是这种情况可以通过颜色调换和旋转来调整;
2.2.左旋转
以节点X为根逆时针旋转二叉搜索树,使得父节点原来的位置被自己的右子节点替代,左子节点的位置被父节点替代;

详解:
如上图所示,左旋转之后:
- 节点X取代了节点a原来的位置;
- 节点Y取代了节点X原来的位置;
- 节点X的左子树 a 仍然是节点X的左子树(这里X的左子树只有一个节点,有多个节点时同样适用,以下同理);
- 节点Y的右子树 c 仍然是节点Y的右子树;
- 节点Y的左子树 b 向左平移成为了节点X的右子树;
除此之外,二叉搜索树左旋转之后仍为二叉搜索树:

2.3.右旋转
以节点X为根顺时针旋转二叉搜索树,使得父节点原来的位置被自己的左子节点替代,右子节点的位置被父节点替代;

详解:
如上图所示,右旋转之后:
- 节点X取代了节点a原来的位置;
- 节点Y取代了节点X原来的位置;
- 节点X的右子树 a 仍然是节点X的右子树(这里X的右子树虽然只有一个节点,但是多个节点时同样适用,以下同理);
- 节点Y的左子树 b 仍然是节点Y的左子树;
- 节点Y的右子树 c 向右平移成为了节点X的左子树;
除此之外,二叉搜索树右旋转之后仍为二叉搜索树:、

红黑树是一种自平衡二叉查找树,其特性包括节点的红色或黑色,根节点黑色,叶子节点黑色,红色节点的子节点必须黑色,以及所有路径具有相同数量的黑色节点。这些规则确保最长路径不超过最短路径两倍,保持相对平衡。插入操作可能导致不平衡,通过变色、左旋转和右旋转可以恢复平衡。
1901

被折叠的 条评论
为什么被折叠?



