# 南阳oj 题目122 Triangular Sums

## Triangular Sums

The nth Triangular number, T(n) = 1 + … + n, is the sum of the first n integers. It is the number of points in a triangular array with n points on side. For example T(4):

X
X X
X X X
X X X X

Write a program to compute the weighted sum of triangular numbers:

W(n) = SUM[k = 1…n; k * T(k + 1)]

The first line of input contains a single integer N, (1 ≤ N ≤ 1000) which is the number of datasets that follow.

Each dataset consists of a single line of input containing a single integer n, (1 ≤ n ≤300), which is the number of points on a side of the triangle.

For each dataset, output on a single line the dataset number (1 through N), a blank, the value of n for the dataset, a blank, and the weighted sum ,W(n), of triangular numbers for n.

4
3
4
5
10

1 3 45
2 4 105
3 5 210
4 10 2145

W(n) = SUM[k = 1…n; k * T(k + 1)]

注意输出格式

#include<iostream>
using namespace std;
int T_n(int k)
{
int tn=0,i;
for(i=1;i<=k;++i)
tn+=i;
return tn;
}
int main()
{
int N,temp=1;
cin>>N;
while(N--)
{
int n,i,Wn,Tn,sum;
cin>>n;
sum=0;
for(i=1;i<=n;++i)
{
Tn=T_n(i+1);
Wn=i*Tn;
sum+=Wn;
}
cout<<temp++<<" "<<n<<" "<<sum<<endl;
}
return 0;
}

10-09 614

05-03 168

07-29 83

01-12 833

07-18 798

02-13 1176

03-01 255

11-15 1972

05-31 1593

03-17 930