【AI】——结合Ollama、Open WebUI和Docker本地部署可视化AI大语言模型

🎼个人主页:【Y小夜】

😎作者简介:一位双非学校的大三学生,编程爱好者,

专注于基础和实战分享,欢迎私信咨询!

🎆入门专栏:🎇【MySQLJavawebRustpython

🎈热门专栏:🎊【SpringbootRedisSpringsecurityDockerAI】 

感谢您的点赞、关注、评论、收藏、是对我最大的认可和支持!❤️

目录

🎈本地部署模型

🎉安装Ollama

🎉安装 Open WebUI

🎊安装Docker

🥞启动 Hyper-v

🥞 安装 WSL(适用于Linux的Windows的子系统):

🥞安装Docker

 🎊Docker 部署 Open WebUI


🎈本地部署模型

🎉安装Ollama

官网:​Ollama

然后进行一下下载

安装完成之后是没有提示的,然后我们需要去测试一下。(这里我是以QWen为例子,大家可以尝试其他的模型)

打开一个终端,然后输入一个命令,进行测试

ollama run qwen

 现在是正在进行下载,默认是保存在(C 盘,C:\Users<username>.ollama\models 如果想更改默认路径,可以通过设置OLLAMA_MODELS进行修改,然后重启终端,重启 ollama 服务。或者在环境变量中修改OLLAMA_MODELS的位置

setx OLLAMA_MODELS "D:"

下载完成后,可以进行测试:

查看都安装了什么模型

ollma list命令显示所有安装模型

ollama rm 模型名称 删除指定模型

但这个现在就只可以在终端中使用 ,那么我问现在就搞一个web页面进行交互,增加体验。

🎉安装 Open WebUI

🎊安装Docker

如果你本地已经有了Docker了,那就可以直接看下面的内容。

🥞启动 Hyper-v

但是如果你这里没有Hyper-V,那么恭喜你,博主也没有,博主已经踩过这个坑了。

我们首先在桌面上建立一个文件,命名为Hyper.cmd,然后填入内容

pushd "%~dp0"
dir /b %SystemRoot%\servicing\Packages\*Hyper-V*.mum >hyper-v.txt
for /f %%i in ('findstr /i . hyper-v.txt 2^>nul') do dism /online /norestart /add-package:"%SystemRoot%\servicing\Packages\%%i"
del hyper-v.txt
Dism /online /enable-feature /featurename:Microsoft-Hyper-V-All /LimitAccess /ALL

然后使用管理员身份运行这个文件,运行完毕后,重启电脑,再打开,就可以找到Hyper-V了。

🥞 安装 WSL(适用于Linux的Windows的子系统):
wsl --update

然后进行安装

wsl --install

 

🥞安装Docker

官网: Windows | Docker Docs

然后进行下载:

然后双击进行安装

这里咱们先不注册,直接进行登录即可

左下角是绿色,就代表运行成功了

 🎊Docker 部署 Open WebUI

打开命令行,然后输入docker

展示内容,说明我们的docker安装成功了

然后开始用docker安装open webUI

然后,安装完成够就可以,打开Docker Desktop,访问http://localhost:3000端口了

然后点击登录网址,

就是你会发现,点击上方选择一个模型旁边的加号+可以增加大模型,点击下拉按钮可以选择当前使用哪一个已安装的模型,但是,你可能会出现一个错误,就是找不到你自己安装的模型,这个原因是因为你的ollama没有启动,我们启动一下ollama

然后再重新,加载一下网页,再选择一下模型

提问一下问题,模型进行回答。这样我们本地的模型就部署好了

<think>嗯,用户问为什么用Ollama本地部署的DeepSeek实现可视化UI操作都需要Docker。首先,我需要理解OllamaDeepSeek各自的用途。Ollama是一个本地运行大型语言模型的工具,而DeepSeek可能是指深度求索公司的模型,比如他们的AI模型。用户想要在本地部署后通过可视化UI操作,但发现需要Docker,为什么会这样呢? 首先,我应该考虑Ollama本身的功能。Ollama主要是命令行工具,可能没有内置的Web界面。所以用户如果想要可视化UI,可能需要额外的工具,比如Open WebUI或者其他第三方前端。这时候,Docker的作用可能在于方便地部署管理这些前端服务,同时保持环境隔离。 接下来,可能涉及到的组件包括Ollama服务、前端UI、以及可能的反向代理或者其他依赖项。使用Docker容器可以将这些组件打包,解决依赖问题,避免用户手动安装配置各种环境,尤其是不同系统之间的兼容性问题。 另外,Docker容器部署能够简化部署流程,用户只需要运行一个容器,而不需要关心底层系统的具体配置。这对于不熟悉服务器运维的用户来说非常方便,降低了使用门槛。 可能还需要考虑安全性问题。通过Docker容器隔离服务,可以防止前端UI直接访问宿主机的敏感资源,提高系统的安全性。此外,版本管理更新也更容易,每个组件可以独立更新,不会影响其他部分。 用户可能有隐藏的需求,比如希望简化部署流程,或者对Docker的使用不太熟悉,所以才会问为什么必须用Docker。可能需要解释除了Docker之外的其他方法,比如手动部署前端,但这样会更复杂,容易出错。 总结一下,Docker在这里的作用主要是简化部署、解决依赖、环境隔离方便管理。用户可能需要一个更详细的步骤说明,或者替代方案,但当前问题主要是解释为什么Docker成为必要选择。</think>关于使用Docker部署Ollama+可视化UI的技术逻辑,这里为您梳理关键要点: $$\begin{array}{|c|c|} \hline \textbf{核心组件} & \textbf{Docker化的必要性} \\ \hline \text{Ollama服务} & \text{需绑定端口(默认11434),容器化避免端口冲突} \\ \hline \text{Web UI(如Open WebUI)} & \text{依赖Node.js环境,容器隔离npm版本冲突} \\ \hline \text{反向代理(Nginx)} & \text{SSL配置/路由管理通过容器预置模板简化} \\ \hline \text{模型存储卷} & \text{容器持久化存储保证模型文件不丢失} \\ \hline \end{array}$$ 具体技术实现路径示例: ```docker version: '3' services: ollama: image: ollama/ollama ports: - "11434:11434" volumes: - ollama_models:/root/.ollama webui: image: ghcr.io/open-webui/open-webui ports: - "3000:8080" depends_on: - ollama environment: - OLLAMA_API_BASE_URL=http://ollama:11434 ``` **替代方案对比**(非Docker部署痛点): 1. 手动配置Node环境时: - 需处理`npm install`时的C++编译依赖(如node-gyp) - 不同系统下可能遇到`libstdc++.so.6`等库版本问题 2. 直接二进制部署时: - 更新需要重新下载全部文件(容器只需`docker pull`) - 难以实现多版本共存(容器可指定tag运行) 建议通过Docker部署的三大优势: 1. **依赖隔离**:避免污染主机环境(如同时存在Python3.8Python3.10) 2. **快速回滚**:出现问题时执行`docker-compose down && docker-compose up -d` 3. **资源限制**:可通过`--memory=16g`精确控制内存使用量 若坚持非Docker部署,可参考以下手动配置流程: ```bash # 安装Ollama curl -fsSL https://ollama.com/install.sh | sh # 编译Open WebUI git cl
评论 58
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Y小夜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值