【TensorFlow学习笔记】5:variable_scope和name_scope,图的基本操作

学习《深度学习之TensorFlow》时的一些实践。 variable_scope 一般的嵌套 上节有学到在嵌套scope中的变量,一般是: import tensorflow as tf # with tf.variable_scope("scopeA")...

2018-12-18 13:59:02

阅读数 172

评论数 0

【TensorFlow学习笔记】4:认识Variable及其重用(共享),在scope上的初始化

学习《深度学习之TensorFlow》时的一些实践。 认识TF中的Variable TF通过name来标识变量(Variable),这和调用者定义的程序里的"变量名"无关。当不指定name时,由TF自己指定,当创建的变量的name已经存在时,TF会为其改名。 ...

2018-12-17 16:03:51

阅读数 90

评论数 0

【TensorFlow学习笔记】3:认识TensorBoard可视化计算图和计算结点

学习《深度学习之TensorFlow》时的一些实践。 TensorBoard是一个日志展示系统,在Session中使用tf.summary中的API将日志保存在日志文件中,然后通过TensorBoard服务在浏览器中就可以读取这些日志,查看图形化后的信息。 对线性回归做可视化 上篇的线性回归,这...

2018-12-17 13:24:09

阅读数 80

评论数 0

【TensorFlow学习笔记】2:基本使用流程和使用检查点,按照时间自动管理检查点

学习《深度学习之TensorFlow》时的一些实践。 TF的基本使用 对于分类问题的特征X和标签Y,分别定义tf.placeholder,这是计算图输入数据的入口。 对于模型中的参数(注意不是超参数),如往往是权向量w和偏置b,定义tf.Variable,并传入初始的值,模型训练就是在改...

2018-12-17 11:43:33

阅读数 136

评论数 3

【TensorFlow学习笔记】1:注解MNIST手写数字分类

跟着官方文档敲了MNIST手写数字识别的两个TF程序,没接触之前还以为底层计算也是使用的Python,原来Python只是用来描述计算图和何时计算的。 虽然Tensor翻译过来就是张量,但目前还是不理解它和我们认知的张量有什么关系,暂且理解成一个数据容器,可以存储多维的数据,还有一些TF中特殊的...

2018-10-08 21:03:57

阅读数 107

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭