【知识碎片】3:SELECT查询练习,硬件与并行

数据库 SELECT查询练习 --检索有学生重修的教师编号和姓名 USE school; SELECT DISTINCT T1.gh AS '教师工号',T1.xm AS '教师姓名' FROM dbo.T AS T1 RIGHT JOIN dbo.E ...

2017-12-30 23:49:46

阅读数 299

评论数 1

【ML学习笔记】15:朴素贝叶斯算法做文档特征分类

延续上一次的demo,书上给出了两个例子,一个是从下载好的txt文档读入样本集,另一个则是在网络RSS源上读取信息。具体的步骤解释写在代码注释中。从txt文件读入+词集模型这个例子所用的样本集有25个txt是垃圾邮件,有25个txt是普通邮件内容,做的事情是读入它们,切分文本。 和之前的de...

2017-12-30 13:19:08

阅读数 358

评论数 0

【ML学习笔记】14:朴素贝叶斯算法的demo

碍于这学期课程的紧迫,现在需要尽快从课本上掌握一些ML算法,我本不想经过danger zone,现在看来却只能尽快进入danger zone,数学理论上的缺陷只能后面找时间弥补了。 如果你在读这篇文章,希望你不要走像我一样的道路,此举实在是出于无奈,尽量不要去做一个心急的程序员,应当分清楚哪些...

2017-12-29 11:00:45

阅读数 636

评论数 0

【ML学习笔记】13:k-近邻算法做数值特征分类

继续跟着机器学习白皮书学习k-近邻算法,这个例子给的样本集是三个特征一个标签的。问题描述这个问题讲的是一个女生想给自己约会的男生分类,特征是:ffMiles:每年获得的飞行常客里程数 percentTats:玩视频游戏消耗的时间百分比 iceCream:每周消费的冰淇淋公斤数标签的值是:①不怎么好...

2017-12-26 23:15:09

阅读数 304

评论数 2

【Java学习笔记】46:鼠标监听做动态分区分配的FF/BF/WF算法演示

操作系统课的上机题,用JFrame做了一个可视化的演示程序,这次新用到了鼠标监听的知识。Main.java//主类 public class Main { static int MAXN=20;//一共20大小的内存 static int k=0;//1:FF/2:BF/3:WF选...

2017-12-24 17:52:23

阅读数 447

评论数 0

【知识碎片】2:SELECT查询练习,JSE基础细节

数据库 SELECT查询练习 --查询2011年进校年龄大于20岁的男学生的学号与姓名 USE school; SELECT xh AS '学号',xm AS '姓名' FROM dbo.S WHERE xh>'1100' and xh&a...

2017-12-23 23:30:59

阅读数 327

评论数 0

安装Tomcat并捕获浏览器请求信息和Tomcat返回内容

JSP(Java Server Page)是基于Java Servlet(Java的一个类,为Web应用程序提供了基于组件、独立于平台的方法)的Web开发技术。 静态网页和动态网页 它们的区别在于程序是否在服务器端运行,如果回答是,那么就是动态网页。如果网站内容对更新需求不是很大,使用静态...

2017-12-23 18:23:28

阅读数 651

评论数 0

【ML学习笔记】12:k-近邻算法的demo

k-近邻算法(KNN)是一种有监督学习的分类算法,属于非概率分类器。其基本思路就是,实例的每一个特征都可以赋予一个值去度量,如果有n个特征,那么也就是相当于实例在n维空间中(n个方向各自不同,显然这种假定是建立在我们认为这些特征互不相关的基础上的)。而k-近邻算法也就是,把这个投入到学习机器去做预...

2017-12-22 21:14:53

阅读数 219

评论数 0

PSE页面大小扩展和PAE物理地址扩展

传统的IA32架构IA32架构就是英特尔32位体系架构,从80386开始采用。32位的处理机,32位的地址总线,用两级页表去管理物理内存: 也就是说第一级是页目录,第二级是页表,通过页表中的记录去查找物理页框。顺序是这样的: ①首先,进程去查找CR3(3号控制寄存器,即PDBR**页目...

2017-12-22 00:08:14

阅读数 589

评论数 0

【知识碎片】1:建立索引,JSE基础细节

Linux SSH远程登录的命令 ssh 域名 -p 端口号 -l 用户名 然后会提示输密码,输对就可以了。 错误输出的重定向 命令 2>文件名 如果不写2,或者写1,都属于标准输出的重定向。标准输出就如C++中的cout,错误输出就如C++中的c...

2017-12-17 11:41:37

阅读数 229

评论数 0

【ML学习笔记】11:Accuracy/FAR/FRR/Precision/Recall/ROC/AUC

accuracy准确率 准确率(accuracy)≠精确率(precision) 准确率=正确率 准确率是最传统、最符合我们日常思维的评估方式。在分类问题中,对于任一个实例,在学习机器上跑过以后,如果预测到的标签和其真实标签一样,我们就认为这次预测是准确(accuracy)的。所以准确率...

2017-12-16 02:01:10

阅读数 1189

评论数 0

【Java学习笔记】45:优先级队列PriorityQueue和比较器Comparator

模拟进程调度时的优先数法和简单时间片轮转法,前者可以为进程设定以优先数PRIORITY为优先级,为了更好地并发,每次获得处理机后优先数减少3而重新选取。 在简单轮转法中则仅仅是一个普通队列,按照FIFO的方式出队获得处理机。如果要使用比较器Comparator给优先级队列,在创建时就应作为参数传...

2017-12-14 00:45:06

阅读数 1308

评论数 0

【ML学习笔记】10:机器学习中的数学基础7(张集,秩,维度,行阶梯形)

对线代的很多知识理解仍很浅薄,继续恶补。向量的本质在线代里,我们习惯说的向量都是指列向量。向量虽然是一列数,但是因为有次序,所以每个数在其所处的位置也会携带信息,可以理解为向量是有n个独立维度的数学对象。在线性空间(即向量空间)中,向量就是从原点出发,沿着每个维度走其数值上的距离,最终所指代的那个...

2017-12-10 19:18:35

阅读数 595

评论数 2

【ML学习笔记】9:认识Decision Tree决策树

简述决策树的基本思想决策树算法属于有监督学习,即需要训练集给出各个样本的特征和标签值: 决策树以信息熵及其相关的量为度量指标,构造一棵熵下降最快的树,在叶节点处熵比较小(具体多小也要考虑overfitting的问题),这时每个叶节点下的实例被认为处于同一类(标签相同)。注意不同叶子下的实例标...

2017-12-09 17:24:13

阅读数 400

评论数 0

【ML学习笔记】8:PAC可能近似正确

简述PAC的意思Probably Approximate Correct直译过来就是”可能近似正确”,这里面用了两个描述”正确”的词,可能和近似。 “近似”是在取值上,只要和真实值的偏差小于一个足够小的值就认为”近似正确”;”可能”是在概率上,即只要”近似正确”的概率足够大就认为”可能近似正确”...

2017-12-08 22:19:49

阅读数 1458

评论数 1

【ML学习笔记】7:查漏补缺1(期望风险,经验风险,过学习,结构风险)

目前把花书和清华大学出版社的《机器学习和视觉感知》一起看,这本书里用数学的方式讲了一些具体的机器学习模型。定义与地位机器学习是研究人工智能算法的科学,旨在如何在经验学习中改善具体算法的性能,即通过经验提高其自动性。 按应用领域分类这本书简述了对机器学习区分类别的几种方式,目前只有这种方式比较能看...

2017-12-07 12:18:22

阅读数 779

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭