【PyTorch学习笔记】19:Batch Normalization

归一化(Normalization) 简述 现在常使用ReLU函数,避免梯度弥散的问题,但是有些场合使用Sigmoid这样的函数效果更好(或者是必须使用),如Sigmoid函数当函数值较大或者较小时,其导数都接近0,这会引起梯度弥散,所以要将输入控制在一个较好的范围内,这样才避免了这种问题。 ...

2019-04-30 12:40:53

阅读数 77

评论数 0

【PyTorch学习笔记】18:pooling,up-sample,ReLU

pooling池化是下采样(down-sample)的一种手段,让feature map减小;而up-sample则是上采样,实际上做了放大图像的操作。 在CNN中,基本的单元是一个Conv2d,后面配上[Batch Norm, pooling, ReLU],后面三个的顺序不一定。 pooli...

2019-04-29 10:21:26

阅读数 131

评论数 0

【Go学习笔记】1:变量,常量,数组

变量基本使用 package main import "fmt" var e = "一个全局变量字符串" var f, g int = 1, 2 //一次定义多个 //可以用因式分解的写法 var ( h, i, j int = 3, 4, ...

2019-04-26 21:10:23

阅读数 81

评论数 0

【Keras学习笔记】11:CNN识别MNIST手写数字

CNN架构 卷积层 layers.Conv2D data-format: 输入图像的格式,当为"channels_last"时为(batch, height, width, channels);当为"channels_first"时为(batch, cha...

2019-04-24 15:28:04

阅读数 42

评论数 0

【Keras学习笔记】10:IMDb电影评价数据集文本分类

读取数据 import keras from keras import layers import numpy as np from matplotlib import pyplot as plt import pandas as pd %matplotlib inline Using Tens...

2019-04-20 18:50:20

阅读数 407

评论数 0

【Keras学习笔记】9:从MNIST手写数字识别中初识ANN超参数的选择

读取数据 import keras from keras import layers import numpy as np from matplotlib import pyplot as plt import pandas as pd %matplotlib inline Us...

2019-04-19 19:31:39

阅读数 123

评论数 2

【Keras学习笔记】8:使用Dropout和正则化项抑制过拟合

读取数据和预处理 import keras from keras import layers import numpy as np from matplotlib import pyplot as plt import pandas as pd %matplotlib inline Using ...

2019-04-19 17:38:01

阅读数 135

评论数 0

【Keras学习笔记】7:较多参数的MLP在信用卡欺诈数据集上过拟合

读取数据和预处理 import keras from keras import layers import numpy as np from matplotlib import pyplot as plt import pandas as pd %matplotlib inline ...

2019-04-17 19:59:47

阅读数 47

评论数 0

【Keras学习笔记】6:MLP预测Titanic数据集

读取数据和预处理 import keras from keras import layers from matplotlib import pyplot as plt import numpy as np import pandas as pd %matplotlib inline Using ...

2019-04-17 18:04:57

阅读数 234

评论数 0

【Keras学习笔记】5:Softmax多分类预测Iris鸢尾花数据集(顺序编码)

读入数据和预处理 import keras from keras import layers import numpy as np import pandas as pd from matplotlib import pyplot as plt %matplotlib inline Using ...

2019-04-16 15:27:34

阅读数 137

评论数 0

【Keras学习笔记】4:Softmax多分类预测Iris鸢尾花数据集(one-hot编码)

读入数据和预处理 import keras from keras import layers import numpy as np import pandas as pd from matplotlib import pyplot as plt %matplotlib inline ...

2019-04-16 15:04:16

阅读数 171

评论数 0

【Keras学习笔记】3:Logistic回归预测Kaggle泰坦尼克数据集

Logistic回归预测Titanic 读取数据 import pandas as pd import keras from keras import layers import numpy as np Using TensorFlow backend. data = pd.read_csv(...

2019-04-13 20:41:58

阅读数 112

评论数 0

【Keras学习笔记】2:多元线性回归预测Kaggle房价

多元线性回归 训练模型 多元线性回归也就相当于NN的一层,y=wx+b,其中w和x是>1维的同维向量,也就是用输入的特征x1,x2,…去使用参数w和b预测y值。 import pandas as pd import matplotlib as plt %matplotlib inli...

2019-04-13 17:54:54

阅读数 156

评论数 1

【Keras学习笔记】1:开发环境搭建,单变量线性回归

简述 Keras是在既有的NN框架之上的封装,可以以TF,CNTK,Theano等作为后端来运行。它的价值在于快速实验,能很方便将实验想法用Keras框架写成代码。 开发环境搭建 默认情况下Keras使用TF为后端。注意后面两个用pip安装,不然一直无法安装成功。这里为了学习方便直接安装了TF,如...

2019-04-12 15:00:34

阅读数 56

评论数 0

【PyTorch学习笔记】17:2D卷积,nn.Conv2d和F.conv2d

简述 2D卷积很适合处理图像输入。以之前的MNIST为例,在使用MLP时,为方便全连接层的处理,将28乘28的输入flatten成了784维的向量,这样就要有784个权值。而使用了2D卷积以后,假设使用3乘3的卷积核,那么每次的输入都是卷积核扫过的3乘3大小的区域,这样就只需要有9个权值,参数量大...

2019-04-05 10:42:16

阅读数 759

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭