基于毫米波雷达数据目标检测

RADAR目标检测

1. FMCW毫米波雷达

利用高频电路产生特定调制频率(FMCW)的电磁波,并通过天线发送电磁波和接收从目标反射回来的电磁波,通过发送和接收电磁波的参数来计算目标的各个参数。FMCW波形频率随时间线性变化。
工作频率:76~81GHz(长距离探测和高距离分辨率)
在这里插入图片描述信号处理流程信号处理

  • 合成器:生成线性调频信号, 上图B为带宽,Tc为Chirp信号周期,fc为起始频率,S为频率变化率(恒定)。FMCW信号频率线性增长,称为"chirp", 并周期性变化。
  • 发射天线(TX): 发射线性调频信号。
  • 接收天线(RX): 接收反射信号。
  • 混频器:合并两者信号,生成中频(IF)信号。
    每帧发出M个Chirp信号,每个Chirp采样个数为NK个接收天线会收到K组返回信号。

对中频信号处理得到:

  • RD数据:ADC数据做Range-FFT+
本文以车载防撞雷达为研究背景,针对毫米波雷达目标检测和参数估计算法中的一些关键技术展开研究,并设计了一种低复杂度的毫米波车载雷达信号处理模块,应用于24GHz汽车前防撞雷达系统。首先,阐述了毫米波雷达的研究背景及意义,介绍国内外研究现状,主要包括产品级研究进展和毫米波雷达关键技术研究进展,对不同体制连续波雷达测距测速原理进行了详细推导,为后续研究和仿真提供了理论基础。其次,研究了毫米波线性调频连续波(Linear Frequency Modulated Continuous Wave,LFMCW)雷达中的多目标配对和速度解模糊算法。首先,针对现有变周期三角波LFMCW雷达利用容差函数进行多目标配对方法在目标数较多时算法复杂度较高的缺点,提出一种利用先验信息压缩频率配对空间的多步配对算法,降低配对复杂度。然后,针对现有锯齿波LFMCW雷达多重脉冲重复频率(Pulse Recurrence Frequency,PRF)解速度模糊算法复杂度高、鲁棒性差等缺点,提出一种改进算法,该算法根据模糊速度计算可能的速度值,得到对应的慢时间维离散傅里叶变换(Discrete Fourier Transform,DFT)因子及其频谱幅度值,最大频谱幅度值对应的速度值即为不模糊速度,极大降低了解模糊算法复杂度。然后,研究了恒虚警概率(Constant False Alarm Rate,CFAR)检测算法。在分析恒虚警概率检测目标遮蔽和自遮蔽效应形成原因的基础上,提出了一种能够自适应改变噪声电平估计样本的改进CFAR算法,该算法在CFAR检测过程中加入一个反馈操作,当某一频谱单元存在目标时,用估计得到的噪声功率电平代替该频谱单元值,减小对后续频谱单元噪声功率电平估计的影响,从而减小目标遮蔽与自遮蔽效应。针对二维CFAR算法,根据雷达速度计算不同距离单元的静止杂波所处的速度单元,将二维平面划分为噪声区与杂波区,对不同区域采用不同的CFAR准则进行检测,在保证虚警概率的前提下提高目标检测概率。最后,针对变周期三角波车载防撞雷达帧结构层次不清,实用性差的问题,提出一种多层次、低复杂度的帧结构及其设计方法,以采样间隔为最小时间单位更有利于系统同步,采用固定长度的子时隙和时隙时间使帧结构更加简单,降低硬件实现成本。利用现有系统硬件结构进行虚拟阵列的设计,通过调整发射天线间距并采用时间分集方式形成具有更大孔径的虚拟接收阵列,获得更高的波束成形增益。在此基础上,设计一种低复杂度的信号处理模块,该模块由信号预处理、波束成形、CFAR检测和多目标配对等子模块组成,并在ADSP-BF707平台上进行实现,应用于24GHz汽车前防撞雷达系统。实测结果显示,该模块算法能够实现目标检测与参数估计功能。
### 毫米波雷达2D点云生成 毫米波雷达能够通过发射和接收毫米波信号来探测周围环境中的物体,并据此生成点云数据。对于2D点云生成而言,主要关注的是距离和水平角度两个维度的数据。 #### 发射与接收毫米波信号 当毫米波雷达工作时,会连续不断地向外界发送毫米波信号。这些信号遇到障碍物后会发生反射现象,随后被雷达天线捕捉到。根据反射回波的时间差以及相位变化,可以精确测定目标相对于雷达的距离信息[^2]。 #### 计算距离与角度 为了构建2D点云图,在接收到反射信号之后,需要进一步解析其中携带的空间位置特征: - **距离测量**:利用飞行时间法(Time of Flight),即通过计算发出脉冲至接收到回波之间所需的时间间隔乘以光速再除以二获得实际物理距离。 - **角度估计**:采用多普勒效应或多输入多输出(MIMO)技术实现方位角(azimuth angle)的估算。这一步骤涉及到复杂的算法运算,比如快速傅里叶变换FFT用于频域分析,进而得出不同方向上的强度分布情况,最终映射为目标所在的方向角[^1]。 #### 数据处理与可视化 完成上述两步后即可形成一系列由(x,y)坐标表示的目标点集合——这就是所谓的2D点云图像。通常情况下还需要经过滤噪、去重等一系列预处理流程提高数据质量;接着借助图形库绘制散点图直观展示各个检测对象的具体位置关系[^3]。 ```matlab % MATLAB代码片段示意如何显示简单的2D点云 figure; scatter(points(:,1), points(:,2)); xlabel('X Axis (m)'); ylabel('Y Axis (m)'); title('2D Point Cloud Visualization'); grid on; axis equal; ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值