视觉SLAM14讲学习笔记-ch6

本博客主要记录学习高翔老师视觉SLAM14讲的总结笔记,若有总结不对的地方,欢迎大家与我讨论。

一、状态估计

  • 由于总是存在噪声,通过z,u来推导x,y的过程将会成为一个状态估计的问题,解决该问题的方式有两种:滤波器批量
  • 滤波器仅关心当前时刻的位姿x_{k}
  • 批量方法可以在更大范围达到优化
  • 通过一系列概率学推导,可得到求解x,y的最优解为最大似然估计,即

(x,y)^{*}_{MLE}=\arg\max P(z,u\mid x,y) 

 上式可直观解释为当x,y达到什么状态时,产生的观测数据更接近真实观测数据。

二、最小二乘法

最小二乘法用概率学公式表示为:

P(z_{j,k}\mid x_{k},y_{j})=N(h(y_{j},x_{k}),Q_{k,j})

\Rightarrow (x_{k},y_{j})^{*}=\arg\max N(h(y_{j},x_{k}),Q_{k,j}) 

\Rightarrow (x_{k},y_{j})^{*}=\arg\min (z_{k,j}-h(x_{k},y_{j}))^{T}Q_{k,j}^{-1}(z_{k,j}-h(x_{k},y_{j})) 

由此,可推导出有关状态估计的最小二乘函数:

\left\{\begin{matrix} e_{u,k}=x_{k}-f(x_{k-1},u_{k})\\ e_{z,j,k}=z_{k,j}-h(x_{k},y_{j})\\ \min J(x,y)=\sum_{k}e_{u,k}^{T}R^{-1}e_{u,k}+\sum_{k}\sum_{j} e_{z,k,j}^{T}Q_{k,j}^{-1}e_{z,k,j} \end{matrix}\right. 

 通过非线性优化方法,微调代价函数中待优化项,使得整体代价变小。

三、非线性最小二乘

对于下式:

\min_{x}F(x)=\frac{1}{2} \left \| f(x) \right \|_{2}^{2}

求解,一般\frac{\mathrm{d} F}{\mathrm{d} x} =0 ,即可求得极小点,但对于很多F(x)的形式过于复杂,直接求解的方法比较困难,所以可采用迭代的方法求解。

3.1一阶和二阶梯度法

F(x)Taylar展开:

F(x_{k}+\bigtriangleup x_{k})\approx F(x_{k})+J(x_{k})^{T}\bigtriangleup x_{k}+\frac{1}{2} \bigtriangleup x_{k}^{T}H(x_{k})\bigtriangleup x_{k}

对于上式线性化后求极值,若保留一阶梯度,则为最速下降法: 

\bigtriangleup x^{*}=-J(x_{k}) 

若保留到二阶梯度,则为牛顿法: 

H(x_{k})\bigtriangleup x^{*}=-J(x_{k}) 

 3.2高斯牛顿法

若将f(x)Taylar展开:

f(x+\bigtriangleup x)\approx f(x)+J(x)^{T}\bigtriangleup x

注意,这与一阶二阶梯度法不同,这里的雅克比矩阵J(x)是对 f(x)的一阶导数。由此,求解梯度最优值可转化为:

\bigtriangleup x^{*}=\arg\min\frac{1}{2} \left \| f(x)+J(x^{T})\bigtriangleup x \right \| ^{2}

对上式右边展开,并对\bigtriangleup x求导可得:

J(x)J(x)^{T}\bigtriangleup x=-J(x)f(x)

上式可称为增量方程高斯牛顿方程或正规方程。 缺点是J(x)J(x)^{T}不容易求逆,会导致出现病态矩阵。

3.3列文伯格-马夸尔特方法

指标\rho(信赖区域)来刻画近似模型和实际模型之间的差异:

\rho =\frac{f(x+\bigtriangleup x)-f(x)}{J(x)^{T}\bigtriangleup x}

\rho越接近1,表示近似效果越好,小于1,表示近似效果较差,大于1,需要扩大近似范围。由此,可约束\bigtriangleup x的求解范围,即:

\min_{\bigtriangleup x}\frac{1}{2} \left \| f(x_{k})+J(x_{k})^{T}\bigtriangleup x \right \| ^{2} s.t\left \| D\bigtriangleup x \right \| ^{2}\le u 

 若\rho>\frac{3}{4},u=2u,若\rho<\frac{3}{4},u=0.5u,将上述待约束的求解最优函数转换为无约束最优问题:

L(\bigtriangleup x.\lambda )=\frac{1}{2} \left \| f(x_{k})+J(x_{k})^{T}\bigtriangleup x \right \| ^{2} +\frac{\lambda }{2} (\left \| D\bigtriangleup x \right \|^{2}-u )

\Rightarrow (H+\lambda D^{T}D)\bigtriangleup x_{k}=g 

其中,D为非负对角阵,用于表示不同状态的权值,若D取单位阵I,则:

(H+\lambda I)\bigtriangleup x_{k}=g 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值