类似于文档流的界面布局器:改进版的FlowLayout

 

我在做一个swing程序的时候想做一个类似于文档流的界面布局:

 

在一个JPanel里面动态放置一些面板(如jPanel),这些面板的尺寸大小都是相同的,考虑到不同尺寸屏幕的使用方便性来说,最好是当第一行满时,会自动换行到第二行。如果超过了当前JPanle的高度,则会出现上下滚动条。

 

一开始我用JPanel+FlowLayout.LEFT布局,倒是可以自动换行,但是发现当面板占据空间的高度高于JPanel的高度时,没有上下方向的滚动条出现,也就是说,下面的内容都被遮住了。

 

然后我在JPanel外面套了一个JScrollPane,却发现内容会一直往右边加,超出JPanel的宽度则出现横向的滚动条,与预想的效果相差较大。

 

于是我把JScrollPane的horizontalScrollBarPolicy属性设为ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER,这回横向滚动条没了,但是图片还是一直往右边加,超出JPanle宽度部分被遮住了。

 

经过上网检索资料,有一个方法可以实现,即继承FLowLayout类,并重写minimumLayoutSize方法和preferredLayoutSize方法,不过帖子上的代码有点小问题,后来我仔细研究代码和源码,进行了修正,最后实现了想要的效果,下面把正确的代码贴出来,供有此类需求的人使用

 

package com.xxxx.swing.layout;

import java.awt.Component;
import java.awt.Container;
import java.awt.Dimension;
import java.awt.FlowLayout;
import java.awt.Insets;

public class ModifiedFlowLayout extends FlowLayout {

    public ModifiedFlowLayout() {  
        super();  
    }  
  
    public ModifiedFlowLayout(int align) {  
        super(align);  
    }  
  
    public ModifiedFlowLayout(int align, int hgap, int vgap) {  
        super(align, hgap, vgap);  
    }  
  
    public Dimension minimumLayoutSize(Container target) {  
        return computeSize(target, true);  
    }  
  
    public Dimension preferredLayoutSize(Container target) {  
        return computeSize(target, false);  
    }  
  
    private Dimension computeSize(Container target, boolean minimum) {  
        synchronized (target.getTreeLock()) {  
            int hgap = getHgap();  
            int vgap = getVgap();  
            int w = target.getWidth();  
  
            if (w == 0) {  
                w = Integer.MAX_VALUE;  
            }  
  
            Insets insets = target.getInsets();  
            if (insets == null) {  
                insets = new Insets(0, 0, 0, 0);  
            }  
            int reqdWidth = 0;  
  
            int maxwidth = w - (insets.left + insets.right + hgap * 2);  
            int n = target.getComponentCount();  
            int x = 0;  
            int y = insets.top;  
            int rowHeight = 0;  
  
            for (int i = 0; i < n; i++) {  
                Component c = target.getComponent(i);  
                if (c.isVisible()) {  
                    Dimension d =  
                            minimum ? c.getMinimumSize() : c.getPreferredSize();  
                    if ((x == 0) || ((x + d.width) <= maxwidth)) {  
                        if (x > 0) {  
                            x += hgap;  
                        }  
                        x += d.width;  
                        rowHeight = Math.max(rowHeight, d.height);  
                    } else {  
                        x = d.width;  
                        y += vgap + rowHeight;  
                        rowHeight = d.height;  
                    }  
                    reqdWidth = Math.max(reqdWidth, x);  
                }  
            }  
            y += rowHeight;
            return new Dimension(reqdWidth + insets.left + insets.right, y);  
        }  
    }  
}

 

最终的效果(不想截图了,从网上找了个类似的效果图片贴上来吧):

 



 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值