多次采坑,总结出目标每次转化费用的实践经验

本文分享了作者在尝试目标每次转化费用出价策略时的实验结果,探讨了智能出价的工作原理、适用条件、影响因素,以及在实际操作中的注意事项,包括全站代码、非最终点击模型和受众列表的运用。作者发现,虽然智能出价能显著提升转化,但数据环境和账户结构对效果有很大影响,建议谨慎尝试并逐步优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目标每次转化费用出价,属于智能出价的一种类型。这两天尝试使用该出价方式来优化广告,尝试结果真是让我血脉喷张(这个形容真不过分)。废话不多说,直接进入正题。

目标每次转化费用出价,属于智能出价的一种。

对于其工作原理,谷歌给出的官方解释是:

每当您的广告符合展示条件时,“目标每次转化费用”出价策略就会评估竞价时存在的各种情境信号,再结合广告系列的历史信息,自动为广告确定一个最理想的每次点击费用出价。Google Ads 在设置这些出价时,会确保所有采用此策略的广告系列的平均每次转化费用等于您设定的每次转化费用目标。

一些转化的费用可能会高于您设定的目标,还有一些转化的费用可能会低于此目标;但总体而言,Google Ads 会尽可能让您的每次转化费用等于您设定的目标每次转化费用。每次转化费用之所以会出现这些波动,是因为实际每次转化费用的一些决定因素(例如您的网站或广告有所更改,或者广告竞价竞争加剧)超出了 Google 的控制范围。此外,您的实际转化率也可能低于或高于预测转化率。

例如,如果您将目标每次转化费用设为 10 元,Google Ads 将自动为您设置每次点击费用出价,争取以平均 10 元的费用为您带来尽可能多的转化。为了改善您的广告在每次广告竞价中的表现,该出价策略会根据设备、浏览器、地理位置、时段以及再营销列表等实时信号来调整出价。

自己的解读:广告在符合展示条件时,会结合历史数据,并考虑实时信号(即据设备、浏览器、地理位置、时段以及再营销列表等),自动为广告确定一个最为理性的每次点击费用。历史数据即为受众列表的数据及谷歌自己后台的数据。如果历史数据越充分,谷歌根据历史数据可以更准确地把握不同等级的用户的特征,从而去衡量新用户的优质程度,越优质的用户,谷歌会用更高的cpc去争取。cpa根据过去30天的历史转化数据来设定,一般是过去30天的平均cp,在跑智能出价的过程中,可能有些时候cpa会高于所设定的目标cpa,有些可能会低于目标cpa,但是一段时间后,会尽可能让实际每次转化费用等于设定的目标每次转化费用(这个时间一般是一两个月)

基本适用条件:

智能出价的最佳适用环境是:通过全站代码和非最终点击模型,衡量全部的转化数据,并对所有参与的广告进行论功行赏。通过将受众添加到系列中,我们利用丰富的受众数据,为每个客户的机制出价。通过全站代码,非最终点击模型和受众的结合,我们才能在智能竞价中获得好的表现。这段话的要点归纳为以下几点:

1)全站布局代码:安装有效的转化跟踪并使用全局代码记录每一次转化。确保有足够的转化数据(建议一个月转化次数大于30次)

2)非最终点击归因:转化归因模型,不要才用最终点击的归因模型,这样更有利于理解消费者在消费路径中每个触点的价值,并提供更好的出价策略衡量(比如使用以数据为依据的分析模型,让谷歌更客观地去评估每个客户,每个关键词带来的转化价值)

3)添加受众列表:实施全网络的再营销受众及类似受众(观察),可以为自动出价提供更好的效果洞察和更丰富的信号(注意受众列表是用于观察,而不是定位条件)

4)使用智能出价:使用智能出价来实现营销目标最佳化

自己的实验过程:

第一次实验:选择了5个系列,这五个系列的特点是:

过去30天的转化次数超过30个;

消耗算是中低等水平(为什么要选择消耗是中等水平的,具体原因后面会说明)

转化代码是准确无误的

具体执行:

将过去30天的平均cpa设置为目标每次转化费用出价

以观察的方式添加上对应的受众群体(类似受众暂时未添加),

设备出价保留

以下给出三个较典型系列的数据曲线图:

1)

2)

3)备注:以下系列红框标注的后面部分,目前已恢复为之前的出价方式

第一波测试的数据表现:

修改出价策略后,非常明显的是各个系列的消费金额及cpc都有不同程度的上浮;

曲线1)是调整为目标每次转化费用的近两三天的消费数据大幅上升,但是进入后期时,消耗数据回到之前的水平,cpa及转化次数也没有明显的特点(另外,两个系列的实验结果与该情形相同)

曲线2)自从调整为目标每次转化费用出价后,费用及转化次数都上了一个台阶,每次转化费用表现还算稳定,偶尔有些波动

曲线3)在调整的当天,消耗,转化次数及每次转化费用都有大幅提高,由于消耗数据提高过多,而cpa也没有达到理想状态,处于谨慎考虑,我将目标每次转化费用的出价方式恢复为了每次点击费用人工出价。

自己的总结:

曲线1)的系列的共同特点是:这几个系列属于低消耗的系列,虽然月转化次数超过30次,但也是略微超过,所以数据量不是很大。修改为目标每次转化费用的出价策略后,其能学习的历史数据有限,再加上这些系列的关键词更多的是长尾词,所以没有足够的数据和流量来支撑该出价方式发挥自己的威力,所以,最终还是回到了修改出价前的状态。

曲线3)的系列要特殊说明的一点:该系列含有很多高流量的词(当时的出价是被抑制的),修改为目标每次转化费用的出价策略后,这些词将不再受之前的出价限制,再加之该系列基本都是广泛匹配,所以,修改出价策略后该系列的流量就像打开闸门的水一样,铺面而来。谷歌学习历史数据及根据当下情形进行判断是需要一定的过程的,这个过程却使得该系列中高流量的词逮到了机会,所以消耗就忽的一下上去了。整个系列顿时像失控了一般,如果我不及时调整出价方式,这个系列会烧掉多少钱,我都不敢想象了。可能过一定时间,数据都趋于稳定,但是,到底多久,不好说。

曲线2)的数据效果,就是我希望看到的效果:体量上升了,转化次数增加了,cpa还算正常。这不就是放量想要的效果吗?分析该系列为什么能达到这样的效果,我认为:该系列的消耗算是中等的,过去30天的转化数远超过30次,所以有一定的数据积累;另外,该系列中没有明显的大流量的关键词,所以突兀的情形也排除在外了。所以,足够的学习数据+平稳的流量输出,让机器学习更畅通,从而效果更明显。

基于测试一,紧接着有开启了第二波测试:选择了其他的系列,这波系列的特点是:目测没有特别明显的高流量的关键词,日消耗中低水平,过去30天转化次数大于30次,归因模型由最终点击修改为以数据为依据的归因模型

测试的结果是:有一个系列出现井喷(消费及cpa,cpc猛涨,但是转化次数却没有明显上张),所以,这个系列进行了紧急处理,恢复为了之前的设置。

分析该系列,主要原因是:该系列虽然在投放前大致目测无高流量的关键词,但是那只是凭借自己的经验进行目测而已。而且该系列的关键词采用的都是广泛匹配,且是投放的移动端(移动端的流量之前是被抑制的)。当被改为智能出价后,整个系列像被解放了似的,流量暴涨,且谷歌根据机器学习及实时数据的判断,采用相当高的竞价,让某些词获得更好的展示位置和排名。所以,让整个系列就这样燃起来了。这个系列在平时的消耗中,偏中等水平。

其他低消耗的系列,如同第一波测试一样,没有特别的反常。

分析前后两波的数据,不管是低消耗系列还是高消耗系列,前后两波表现出的共同特征是:

消费在第一时间都会上升,但是平时消费量较大在后续的时间中还是会保持消费上升的水平。而低消费的系列会有所下滑

cpc也呈现上涨的趋势

在搜素广告中获得的展示次数份额及在搜素网络中获得的页首展示份额均呈现上涨趋势

转化次数和cpa相对比较波动

智能出价的效果是被谷歌验证过的,相比于每次点击人工出价,相同cpa的情况下,转化提升20%-30%。对于这一点,我是绝对相信的,但是如何才能达到这个效果,那就视各个账户及各个优化师的具体情况而定了。

虽然智能出价的过程,优化师不需要过多参与,但是创建智能出价的账户环境及各种特殊情况的处理,却是离不开优化师的。

目前就我测试的两波智能出价中目标每次转化费用出价而言,我认为最难确定和把握的点是:不确定什么样的数据环境才是目标每次转化费用的最佳表现环境?即便按照培训和谷歌客服及帮助中心提供的线索进行操作,还是未能很好地适应智能出价。中间有很多突兀的情形发生,也有很多反常的数据表现。

总之,根据我目前的浅显测试,针对目标每次转化费用出价,我得出的初步结论是:

1.转化次数越多的系列,越有利于智能出价的机器学习(一个月超过30个,只是门槛,越多越好)

2.跟踪代码的统计准确性非常重要

3.设备出价是会影响智能出价的,其他的出价设置,例如受众列表的出价及时间等出价的设置均不能对智能出价的设置产生影响

4.受众列表的添加是有利于智能出价的机器学习的,但注意添加受众列表的方式是观察,而不是定位条件

5.归因模型的选择,我暂时还没有进行数据的测试,但是理论上非最终点击的归因模型应该更准确,如果数据量足够,采用以数据为依据的分析模型(归因模型的测试因为没有采用单变量的测试,不便得出结论)

特别注意的点:

1.智能出价的采用,一定要保持谨慎的态度,因为它的消耗真的很厉害,你要有心理准备。建议:如果要尝试,可以选择中低消耗且符合条件的系列进行尝试,如果能有90%的掌控能力了,再考虑将高消费的系列来跑智能出价。

2.账户中存在高流量的关键词或者某些系列之前有做过抑制出价的设置的,也要倍加关注。你就设想这些抑制全部去掉后的消耗情况如何,如果能接受,就尝试吧

3.智能出价的环境,其实跟人工出价的账户环境很不一样:智能出价需要大量的数据,作为其机器学习的基础,而人工出价一般会更精细化地去细分账户,便于人工管理。所以,将人工出价的账户转化智能出价时,会有很多不适应,其中最大的不适应就是数据量不够的问题。因为人工出价各个系列各个广告组都进行了细分,数据量肯定会很大程度地被分散,这个跟智能出价正好相悖。如果自己对智能出价还比较信赖,可以刻意为智能出价准备一些系列,这样在其更适合的环境中使用智能出价,说不定效果会更加。

4.今天我谈到只是目标每次转化费用的出价方式,智能出价还有其他的几种出价方式,比如尽可能提高转化次数,目标广告支出回报率的出价方式。这两种也只是简单地去尝试过,没有具体的总结,后期又机会会继续尝试.

5.如果能把智能出价用好,不仅账户能效果更佳,而且还事半功倍,特别对于大账户而言。研究它,绝不是浪费时间,而且该出价方式可以作为放量的一种手段。但是,谷歌能告诉你方法及一些基本的适用条件,具体怎样使用才更有效,那就靠自己去实验和摸索了。

智能出价,这个黑盒子到底是如何运作的,期待大家能一起去揭开谜底。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值