【分布式学习】CAP定理到底讲啥?

想要设计一个分布式系统,CAP定理是必须掌握的。

CAP(Consistency, Availability, Partition tolerance)三个单词大家都认识,但要知道其真正的意思,恐怕就没那么简单了。

CAP定理(CAP theorem)又被称作布鲁尔定理(Brewer’s theorem),是加州大学伯克利分校的计算机科学家埃里克·布鲁尔(Eric Brewer)在2000年的ACM PODC上提出的一个猜想。

CAP定理:对于一个分布式计算系统,不可能同时满足一致性(Consistence)、可用性(Availability)、分区容错性(Partition Tolerance)三个设计约束。

对于上面的描述,还是有点太抽象,于是有了下面更详细的描述版本:

在一个分布式系统(指互相连接并共享数据的节点的集合)中,当涉及读写操作时,只能保证一致性(Consistence)、可用性(Availability)、分区容错性(Partition Tolerance)三者中的两个,另外一个必须被牺牲。

这里明确两点:1、CAP研究的对象必须是互相连接且共享数据的,因为并不是所有的分布式系统都是连接共享数据的。2、涉及读写操作,CAP关注的是对数据的读写操作,比如分布式的web服务器不是CAP研究的对象。

下面我们来看下三个设计约束的具体定义。

一致性(Consistence)

对某个指定的客户端来说,读操作保证能够返回最新的写操作结果。

可用性(Availability)

非故障的节点在合理的时间内返回合理的响应。所谓合理的响应是指不能是错误和超时的响应,这里要和正确的响应区分开,比如应该返回100的,却返回了90,这个结果是合理的,但显然不是正确的。

分区容错性(Partition Tolerance)

当出现网络分区后,系统能够继续“发挥作用”。所谓发挥作用也就是返回合理的结果,网络分区的原因可能是丢包、连接中断或者拥塞等。

虽然CAP定理是三个要素中只能取两个,但真实世界的情况是我们无法保证网络的100%可靠性,丢包、拥塞、可恶的光缆挖断都会导致网络分区,所以分区是一个必然的现象。如果我们选择了CA而放弃了P,那么当发生分区现象时,为了保证C,系统需要禁止写入,当有写入请求时,系统返回error(例如,当前系统不允许写入),这又和A冲突了,因为A要求不能返回错误和超时。因此,分布式系统理论上不可能选择CA架构,只能选择CP或者AP架构。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值