学习大数据专业的人,相信对Spark这个名词不陌生吧,Spark是一个基于内存的开源计算框架。Spark作为大数据领域活跃、热门、高效的大数据通用计算平台,2009年诞生于美国加州大学伯克利分校AMP实验室。今天加米谷为大家带来关于什么是Spark的一些介绍。

- Spark的发展史
2009年诞生于美国加州大学伯克利分校AMP实验室;
2010年通过BSD许可协议开源发布;
2013年成为Apache孵化项目;
2014年2月成为Apache的顶级项目;
2014年5月Spark1.0.0版正式上线;
2014年11月,Spark的母公司Databricks团队使用Spark刷新数据排序世界记录
- Spark的体系结构
Spark主要包括Spark Core和在Spark Core基础之上建立的应用框架Spark SQL、Spark Streaming、MLlib和GraphX。

3、Spark的安装
Spark伪分布模式的部署
解压 tar -zxvf spark-2.2.0-bin-hadoop2.6.tgz -C ~/training/
注意:由于Hadoop和Spark的脚本有冲突,设置环境变量的时候,只能设置一个
核心配置文件: conf/spark-env.sh
export JAVA_HOME=/root/training/jdk1.8.0_144
export SPARK_MASTER_HOST=bigdata111
export SPARK_MASTER_PORT=7077
从节点的地址:slaves文件中填入主机名即可,注意hosts文件里要有对ip的解析
启动Spark集群 sbin/start-all.sh,这里我个人是给这个文件做了一个软链接start-spark.sh,因为hadoop下的启动脚本也是start-all.sh,会有冲突
Web界面:主机名:8080
4、Spark的特点
快!与之前我们所写的关于Hadoop的MapReduce相比,Spark基于内存的运算要快100倍以上,基于硬盘的运算也要快10倍以上。Spark实现了高效的DAG执行引擎,可以通过基于内存来高效处理数据流。
以上就是关于什么是Spark的一些介绍了,Spark还有很多的强大的能力需要去了解,目前Spark已经在电商、零售、商业和金融等领域广泛的使用,对我们从业者来说是很重要的。
Spark是一个源自加州大学伯克利分校AMP实验室的开源计算框架,以其高效内存计算和DAG执行引擎著称。自2010年开源以来,Spark逐渐发展为Apache顶级项目,广泛应用于电商、零售、商业和金融等领域。Spark的体系结构包括Spark Core、Spark SQL、Spark Streaming、MLlib和GraphX等组件,其快速的性能相比Hadoop MapReduce有显著优势。
4万+

被折叠的 条评论
为什么被折叠?



