- 博客(346)
- 收藏
- 关注
转载 大数据开发:Hadoop技术入门学习避坑指南
大数据的发展,有赖于大数据技术的支持,其中Hadoop无疑是关键性的支持技术。在大数据学习的路上,Hadoop技术学习是很多同学都容易遇到问题和障碍的,尤其是对于很多零基础小白,学习Hadoop常常倍感吃力。但这其实可能是因为大家在Hadoop入门学习上走了弯路。下面我们为大家带来Hadoop技术入门学习避坑指南。我们的老师常常收到很多想学大数据的同学的问题,大数据学习路线应该怎样去规划?Hadoop感觉门槛很高,学不会怎么办?这些其实都是不需要在前期去花太多时间纠结的,想学Hadoop,那就先从入门开始
2021-07-15 17:54:41
175
转载 大数据开发:基于Hadoop的机器学习框架
大数据成为热门关注的同时,机器学习、人工智能等话题热度也在不断攀升,尤其是在现阶段来说,大数据发展到一定阶段,与机器学习、人工智能等方面都存在斩不断的联系,因此很多人也在关注机器学习Hadoop框架。今天,我们就基于Hadoop来聊聊机器学习框架的相关话题。在很多人的理解当中,Hadoop相关性最高的是大数据,但实际上在机器学习上,Hadoop同样有着很不错的应用价值,因为机器学习当中也涉及到大批量的数据处理,而这是Hadoop框架的强项,通过分布式架构,可以实现大批量数据的高效处理。机器学.
2021-07-15 17:53:02
683
转载 大数据查询平台有哪些?Hadoop数据查询组件分析
在大数据处理的各个环节当中,基于大数据平台进行数据查询是比较重要的操作之一,因为这涉及到用户提出数据查询需求,需要大数据平台实现快速的数据查询和结果展示。那么大数据查询平台有哪些?下面我们基于Hadoop数据查询组件来做一个简单的分析。大数据处理涉及到的数据特征,数据量大、数据格式多样是典型的两个特征。其中针对数量大,在大数据查询任务时,就要求能够快速地完成数据查询操作;而针对结构化、半结构化、非结构化的数据,则要求大数据查询需要能够同时检索各个格式的数据。基于Hadoop架构下,可以实现数.
2021-07-14 17:57:42
6297
转载 大数据开发:Hadoop数据写入与读取流程
基于Hadoop开发自己的企业大数据平台,这是现如今很多企业刚开始做大数据的选择,而在Hadoop系统框架当中,Hadoop实现数据处理的原理和技术,更是很多同学在学习上的难点。今天,我们就基于Hadoop生成数据、写入数据和读取数据的流程,来给大家做一个简单的分解。Hadoop系统框架当中,实现数据生成写入的核心组件,就是HDFS。HDFS就是基于Hadoop的分布式文件存储,为数据处理提供底层支持。Hadoop生成数据不像是往磁盘当中拷贝数据那么简单,HDFS基于数据写入和读取,需..
2021-07-14 17:56:14
984
转载 大数据开发:Hadoop数据存储实现解析
大数据时代,行业催生出对大数据处理技术的需求,而要实现大数据处理,首先需要解决的是大数据存储的问题。以Hadoop框架来说,大规模的数据如何实现从存储到计算到结果输出的流程呢,这其中涉及到很关键的就是Hadoop数据库实现数据存储的逻辑的。首先,大数据存储所面临的大数据,类型丰富多样。有结构化数据,比如说来自关系型数据库当中的数据;有半结构化数据,使用key-value方式存储,比如说来自NoSQL数据库当中的数据;还有非结构化数据:没有规则可言比如说图像,视频等。面对这样的数据存储对象,H.
2021-07-13 18:01:16
1916
转载 大数据开发:Hadoop Hive和Spark的对比
在大数据处理框架不断更新和优化的过程中,Hadoop和Spark之间既有竞争关系,也有相互协同的需求。比方说Hive和Spark,在一段时间内,很多人认为Spark会代替Hive,作为Hadoop的数据仓库,Hive真的已经落后了吗?这种说法我们是不赞同的,因为作为数据仓库来说,Hive和Spark之间,Spark真的没有压倒性的优势,下图我们做了一个对比——由上图可以看出,Spark并不适合作为数据仓库:首先,Spark本身没有自己的存储与meta库,这两者是数据仓库最核心的..
2021-07-13 18:00:09
619
转载 大数据开发:Flink SQL快速入门
Flink在大数据处理上,是流批一体的框架,针对于各种场景下的数据处理,也有一套Flink SQL的操作思路。今天的大数据开发学习分享,我们就来讲讲基本的Flink SQL快速入门。Flink SQL,就是直接可以在代码中写SQL,来实现一些查询(Query)操作。Flink的SQL支持,基于实现了SQL标准的Apache Calcite(Apache开源SQL解析工具)。1、导入所需要的的依赖包<dependency> <groupId>org...
2021-07-12 17:59:01
417
转载 大数据开发:消息队列如何实现分布式事务
在大数据技术生态当中,消息队列,主要是针对实时消息流的处理,而实时消息流场景下,常常需要解决的一个问题,就是数据一致性的问题,这其中又涉及到分布式事务。今天的大数据开发学习分享,我们就来讲讲消息队列如何利用事务消息实现分布式事务?消息队列中的事务主要解决的是消息生产者和消息消费者的数据一致性问题。拿电商来举个例子,一般来说,用户在电商APP上购物时,先把商品加到购物车里,然后几件商品一起下单,最后支付,完成购物流程,就可以等待收货了。这个过程中有一个需要用到消息队列的步骤,订单系统创建订单后.
2021-07-12 17:57:41
262
转载 大数据开发:Spark和Hadoop工作流程对比
若说大数据处理框架当中的强劲对手,Spark和Hadoop一定名列其中。Hadoop框架发行得早,系统稳定可靠,Spark发行得相对晚一些,但是在计算性能上,有极大的提升。这两者各有优势,因此常常被拿来做对比。今天我们来聊聊Spark和Hadoop工作流程有何不同。Hadoop可以说是大数据领域资格“最老”的平台框架了,到今年,已经有了十来年的发展历史了,一提到大数据,必提到Hadoop,Hadoop已经俨然成为大数据的代名词之一了。Hadoop当中负责计算的是MapReduce框架,在Ha.
2021-07-09 17:28:49
211
转载 大数据开发:消息队列如何处理重复消息
消息队列是越来越多的实时计算场景下得到应用,而在实时计算场景下,重复消息的情况也是非常常见的,针对于重复消息,如何处理才能保证系统性能稳定,服务可靠?今天的大数据开发学习分享,我们主要来讲讲消息队列如何处理重复消息?1、消息重复的情况必然存在在MQTT协议中,给出了三种传递消息时能够提供的服务质量标准,这三种服务质量从低到高依次是:At most once:至多一次。消息在传递时,最多会被送达一次。也就是说,没什么消息可靠性保证,允许丢消息。一般都是一些对消息可靠性要求不太高的监控场景使用,.
2021-07-09 17:27:40
237
转载 大数据入门:Hadoop学习基础知识点
大数据行业人才紧缺成常态,由此带来的就是大数据行业薪酬的水涨船高,大数据作为一门新兴技术,想要做大数据相关的工作,先得要掌握大数据专业技术才行。作为主流运用的技术框架,Hadoop是重点之一,今天我们来聊聊Hadoop学习必须掌握的知识点。Hadoop基于分布式集群架构,设计了分布式文件系统HDFS,为海量数据存储和管理提供底层支持。Hadoop具有极高的容错性,通过流式数据访问,来实现高吞吐量的数据访问,这对于大数据时代的海量数据处理而言,无疑是提供了关键性的支持。同样基于分布式集群架构,.
2021-07-08 18:00:31
277
转载 大数据开发:消息队列如何处理消息积压
实时消息流处理,是当前大数据计算领域面临的常见场景需求之一,而消息队列对实时消息流的处理,常常会遇到的问题之一,就是消息积压。今天的大数据开发分享,我们就来聊聊,消息队列如何处理消息积压?一般来说,消息积压的直接原因一定是系统中的某个部分出现了性能问题,来不及处理上游发送的消息,才会导致消息积压。1、优化性能来避免消息积压①发送端性能优化对于发送消息的业务逻辑,只需要设置合适的并发和批量大小,就可以达到很多的发送性能。Producer发送消息的过程包括:Producer发送消息给Broke.
2021-07-08 17:59:04
476
转载 大数据入门:Hadoop大数据开发核心讲解
大数据是现如今的热门名词,而在大数据领域,Hadoop又是大数据的热门名词。尤其是对于大数据开发人员,基于Hadoop开发大数据平台,是主要的工作内容之一。学习大数据,其实重点也就是Hadoop开发技术学习,下面我们就来为大家分享一下Hadoop开发核心知识讲解。Hadoop开发人员,在学习阶段首先需要对Hadoop核心组件的功能实现做到了如指掌,这其中包括HDFS、MapReduce以及Yarn,这三者是大数据平台开发当中必须掌握的技术框架。整个Hadoop技术体系,其实可以说都是模块化的.
2021-07-07 17:57:19
641
转载 大数据开发:消息队列如何确保消息不丢失?
消息队列在大数据技术生态当中,一直都是值得重视的存在,开源的消息队列产品,市面上也不少,基于不同的场景,需要去匹配不同的解决方案。围绕消息队列,今天的大数据开发学习分享,我们主要来聊聊,消息队列如何确保消息不丢失。1、检测消息丢失的方法可以利用消息队列的有序性来验证是否有消息丢失。在Producer端给每个发出的消息附加一个连续递增的序号,然后在Consumer端来检查这个序号的连续性。如果没有消息丢失,Consumer收到消息的序号必然是连续递增的,如果检测到序号不连续,那就是丢消息了。还可.
2021-07-07 17:56:17
406
转载 Hadoop与Spark,基于分布式计算的异同点
关于大数据的处理,Hadoop并非唯一的选择,但是在一定程度上来说,是最适合一般企业的选择。这也是Hadoop成为现在主流选择的原因之一,而随着Hadoop在实时数据处理上的局限出现,Spark的呼声高了起来。Hadoop与Spark,成为了常常被拿来做比较的对象。Hadoop作为主流运用的大数据处理系统,是有着坚实的基础的,Hadoop生态系统中在不断发展中也在不断完善,形成了完备的数据处理环节,从数据存储到计算到结果输出,通过Hadoop框架,各个环节都能实现。Hadoop的两大核心,也.
2021-07-06 17:36:57
336
转载 大数据入门:Hadoop是如何工作的
海量数据价值的挖掘,需要大数据技术框架的支持,在目前的大数据平台搭建上,Hadoop是主流的选择之一,而精通Hadoop的大数据人才,也是企业竞相争取的专业技术人才。大数据技术Hadoop所得到的重视,也带来了大家对Hadoop的学习热情。今天我们就从大数据入门的角度,来分享一下Hadoop是如何工作的。Hadoop最初由雅虎的Doug Cutting创建,其核心的灵感,就是MapReduce,当然,到现在MapReduce也是Hadoop的核心组件。MapReduce最初被设计用来处理分布.
2021-07-06 17:35:38
490
转载 实战Hadoop:Hadoop系统应用价值
Hadoop从问世以来,从最初的默默无闻,到今天受到更多的关注和重视,其实也正是说明Hadoop在大数据处理任务上,确实能够满足企业的绝大部分需求。今天,我们从实战Hadoop的角度来聊聊Hadoop系统的应用价值。Hadoop从大的版本来说,从1.0到3.0,中间还经历了很多小的版本的更新迭代,这是在实际的大数据处理上,不断遇到新的问题,也在不断去解决问题,优化自身的系统设计。以Hadoop框架为中心构建的数据分析平台、数据仓库、数据中心,都是对Hadoop技术框架,对大规模数据处理能力的.
2021-07-05 17:38:07
345
转载 Hadoop和Spark:兼容才是可靠的解决方案
说起大数据计算框架,Hadoop和Spark这两者之间,一直都是存在着争议的,甚至一度还出现了Spark会替代Hadoop的声音,但是随着这两年的发展,事实告诉大家,Hadoop和Spark这两者之间,谁也没有消灭谁,都好好地存在着。那些一定要在Hadoop和Spark之间分隔孰优孰劣的人,其实忽视了很重要的一点就是,设计人员最初的初衷,其实是需要Hadoop和Spark实现在一个系统当中的协同运行,共同提供更高效的大数据处理解决方案。Hadoop和Spark,兼容合作才是目前大数据处理的最.
2021-07-05 17:36:55
1163
转载 大数据开发:四种消息队列对比
对于消息队列组件,在大数据技术生态当中,是有着多种解决方案的,在实际的开发任务当中,往往需要根据具体的需求,去规划解决方案。今天的大数据开发学习分享,我们主要来讲讲常用的四种消息队列的对比。1、ActiveMQActiveMQ是由Apache出品,ActiveMQ是一个完全支持JMS1.1和J2EE1.4规范的JMS Provider实现。它非常快速,支持多种语言的客户端和协议,而且可以非常容易的嵌入到企业的应用环境中,并有许多高级功能。主要特性:服从JMS规范:JMS规范提供了良好的标准和.
2021-07-02 17:48:59
2121
转载 大数据开发:Hadoop初学者入门指南
大数据领域发展至今,Hadoop以及确立了关键性的技术地位,企业大数据平台的搭建,基于Hadoop也能得到更高效的解决办法。那么作为大数据工作当中必须要掌握的关键性技术,Hadoop初学该怎么开始呢,下面为大家分享一个简单的Hadoop初学者教程指南。大数据发展当中,基于大规模数据处理和分析有着不同的发展方向,可以大致分为技术开发方向和数据分析方向,这两者理论上来说都需要掌握Hadoop,但是要掌握到哪种程度,是肯定存在差别的。通常来说,技术开发方向,对于Hadoop技术框架的掌握要求要高得.
2021-07-02 17:47:06
646
转载 大数据开发:Hadoop HDFS机架感知
HDFS分布式文件系统,在实际的工作当中,主要依赖于集群去实现,企业级的分布式集群环境,规模庞大,当然也面临着更多复杂的业务需求场景,要保证数据的安全,也要考虑性能。今天的大数据开发学习分享,我们主要来讲讲Hadoop HDFS机架感知相关的部分。分布式的集群通常包含非常多的机器,由于受到机架槽位和交换机网口的限制,通常大型的分布式集群都会跨好几个机架,由多个机架上的机器共同组成一个分布式集群。机架内的机器之间的网络速度通常都会高于跨机架机器之间的网络速度,并且机架之间机器的网络通信通常受到.
2021-07-01 17:34:06
479
转载 大数据开发:Hadoop HDFS安全模式
HDFS作为Hadoop框架下的分布式文件系统,其中包括的知识点是非常繁杂的,尤其在理论学习阶段,如果不多花点时间学透彻,在后续的学习当中也会拖累学习进度。今天的大数据开发学习分享,我们就来讲讲Hadoop HDFS安全模式相关的问题。安全模式是hadoop的一种保护机制,用于保证集群中的数据块的安全性。当集群启动的时候,会首先进入安全模式,当系统处于安全模式时会检查数据块的完整性。假设我们设置的副本数(即参数dfs.replication)是5,那么在datanode上就应该有5个副本存在.
2021-07-01 17:32:40
188
转载 Hadoop初学:Hadoop入门学习难吗
初学Hadoop,很多同学都会反映说,Hadoop体系好复杂,里面涉及到太多的技术知识点了,还没开始学就已经觉得很难了。确实,对于初学者来说,尤其是没有基础的菜鸟们,Hadoop学习不容易。今天我们就从Hadoop初学的角度,来聊聊Hadoop入门理论基础学习。Hadoop的出现,其实是顺应了大数据的发展趋势的。在Hadoop出现之前,对于大规模数据的处理,通过原先的传统解决方案已经很难实现了,或者说,通过原先的解决方案实现起来的成本太高了。而Hadoop的核心思想,通过搭建Hadoop集群.
2021-06-30 17:55:13
1838
转载 大数据开发:MapReduce排序和合并机制
MapReduce作为Hadoop的核心计算引擎,算是学习当中必学的一个部分。虽然发展至今,MapReduce计算框架已经很少直接使用了,但是作为分布式并行计算的代表,还是值得学习。今天的大数据开发学习分享,我们就主要来讲讲MapReduce排序与合并机制。WritableComparable排序排序是MapReduce框架中最重要的操作之一。MapTask和ReduceTask均会对数据按照key进行排序。该操作属于Hadoop的默认行为。任何应用程序中的数据均会被排序,而不管逻辑上是否需.
2021-06-30 17:54:07
1036
转载 学Hadoop还是Spark?Hadoop和Spark哪个更重要
在任何关于大数据计算框架的讨论上,都不可避免地会谈到Hadoop和Spark,争议学Hadoop还是Spark?Hadoop和Spark哪个更重要?这样的问题的出现,其实更多的是涉足大数据行业还不深的同学们才会有的观点,当你真正对大数据处理有了更深的认识,你就明白,这二者之间,并非“你死我活”的关系。在大数据学习阶段,关于大数据计算框架的几项技术,包括Hadoop、Spark、Storm、Flink等等的几个技术名词,大家都会听到,并且在学习当中也都会接触到,因为基于企业数据处理的实际需求,可能你只需要用
2021-06-29 17:43:52
537
转载 大数据开发:spark是否依赖Hadoop?
犹记得,Spark在2013年才开始陆续传到国内,而再此之前,大数据领域可以说是Hadoop的天下。但是仅在一年多左右的时间,Spark就迅速成为了新一代的大数据框架的选择,光环甚至一度超过Hadoop,而关于Hadoop和Spark的争议,也一直没断过。比如说Spark是否依赖hadoop?关于Spark和Hadoop的关系,一开始似乎是处在天然的对立面,非此即彼,什么Hadoop已死,Spark才是未来等等的说法,层出不穷。但是到今天来看,2021年了,Hadoop也还是主流框架之一,Spark也同样
2021-06-29 17:42:51
1774
1
转载 大数据开发:Hadoop数据库知识点讲解
在大数据飞速发展的今天,Hadoop作为主流的技术框架之一,也成为大数据技术学习当中的重点。而在Hadoop技术框架当中,关于Hadoop数据库学习的相关知识,是很多同学反映的难点之一。下面呢,我们就基于Hadoop数据库的相关知识点,给大家做一个全面的解析。在大数据处理当中,数据存储的问题是需要解决的第一道障碍,在解决了数据存储问题之后,才能谈得上下一步的数据处理、数据分析挖掘等。Hadoop为了解决大数据存储的问题,设计了分布式文件系统HDFS,在一群计算机上搭建起集群环境,当面临大规模.
2021-06-28 17:33:02
222
转载 大数据开发:Hadoop序列化入门
作为大数据技术生态当中的第一代框架,Hadoop至今仍然具有不可替代的核心优势,对于企业而言,Hadoop在底层架构上所提供的支持,仍然是企业入场大数据的重要支持框架。今天的大数据开发学习分享,我们就主要来讲讲Hadoop序列化的入门知识点。一、序列化概念序列化是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储到磁盘(持久化)和网络传输反序列化时收到的字节序列(或其他数据传输协议)或者是磁盘持久化数据,转换成内存中的对象。二、为什么要序列化“活的”对象只生存在内存中,断电关机就.
2021-06-28 17:31:28
107
转载 大数据开发:Hadoop数据处理流程分解
Hadoop作为分布式大数据处理系统的典型代表,在大数据领域的应用可以说是占据了相当重要的市场。因为Hadoop是开源项目,所以基于Hadoop去搭建大数据平台,对于企业而言,不会增加更大的成本支出。今天,我们就主要来聊聊Hadoop数据处理是怎么来实现的。Hadoop数据处理,主要依靠的就是分布式文件系统HDFS和分布式计算框架MapReduce,另外,还有Yarn组件系统来负责分布式任务调度。HDFS,主要解决的是大数据存储的问题。HDFS采用的典型的主从结构,一个HDFS集群是由一个N.
2021-06-25 17:34:46
1620
转载 大数据入门:Hadoop核心设计思想
在面对大批量的数据处理任务的时候,Hadoop已经成为稳定高效的平台框架选择,Hadoop在大数据处理上得到重用,那么就代表着想要从事大数据行业的我们,也需要对于Hadoop有足够充分的认识和掌握,今天的Hadoop入门学习,为大家分享Hadoop的核心设计思想。大数据来临的时候,海量的数据规模是令人头疼的第一个问题,为了解决大规模的数据处理,分布式架构应运而生,这也就是Hadoop的核心设计思想。Hadoop的分布式架构,对于大规模数据处理任务,简单来说,就是将这些数据处理任务进行“分组合.
2021-06-25 17:32:49
1627
转载 大数据开发之Hadoop系统运维
在大数据处理的流程环节当中,运维是重要的一环,而从事运维工作的工程师们,也需要专业的技能支撑。不同于传统的运维,大数据运维,因为涉及到云计算、虚拟化等技术,所以工作任务也更加复杂。今天的大数据开发学习分享,我们来讲解Hadoop系统运维。大数据时代的运维,涉及到大数据集群,比如说Hadoop,针对大规模的分布式集群,需要完成更复杂的运维工作。通常来说,Hadoop大数据系统运维,需要掌握至少三个方面的技能,包括大数据运维平台的架构设计与部署、大数据平台的监控告警以及大数据平台的性能调优。具.
2021-06-24 17:37:10
1951
转载 大数据开发:Redis内存快照常见问题解答
Redis的性能优势,很大程度上来说,是因为数据都在内存当中,大大提升了数据处理时的速度和效率。而存在内存当中,就要面临各种临时或意外故障可能带来了数据丢失问题,而这就涉及到Redis的内存快照策略。今天的大数据开发学习分享,我们就主要来讲讲Redis内存快照常见问题。Redis内存快照,简单来理解,就是内存中的数据在某一个时刻的状态记录。对Redis来说,它实现类似照片记录效果的方式,就是把某一时刻的状态以文件的形式写到磁盘上,也就是快照。这样一来,即使宕机,快照文件也不会丢失,数据的可靠性也就得到了
2021-06-24 17:35:46
209
转载 大数据入门:Hadoop伪分布式集群环境搭建教程
在大数据的学习过程中,对于集群的掌握,从理论到实操都是要熟练的。然而很多小伙伴在学习之初,往往遇到这样那样的问题。今天我们就从大数据入门的角度,来分享一份Hadoop伪分布式集群环境搭建教程。我们以三台虚拟机为例来做练习,在电脑性能有限的情况下,搭建三台虚拟机还是可行的。三台虚拟机中有一台用作master,即主节点,用于Hadoop的NameNode节点(NameNode的主要功能是记录数据的元信息,如表字段、表名称、数据块id等);三台虚拟机中有两台用作slave,即从节点,用于Hado.
2021-06-23 17:51:33
481
转载 大数据入门:Hadoop核心架构解析
要实现对大数据的处理,大数据处理技术是最关键的部分,而行业发展所需要的专业人才,就是掌握大数据技术,能够解决实际数据问题的人才。主流的大数据技术框架当中,Hadoop的通用,是得到行业普遍认可的。今天的大数据入门分享,我们主要来聊聊Hadoop核心架构。Hadoop的高可靠性、高扩展性、高效性、高容错性,是Hadoop的优势所在,在十多年的发展历程当中,Hadoop依然被行业认可,占据着重要的市场地位。基于Hadoop基础架构,众多组件形成了Hadoop生态,集海量数据存储、计算于一体,包括.
2021-06-23 17:50:13
1001
转载 大数据开发:Hadoop入门学习路线
学习大数据,核心重点就是对于专业技术的掌握,我们判断一个机构的课程是否具备足够的专业度,也往往是从这些核心技术体系的课程规划来看的。以Hadoop来说,这是大数据学习当中必不可少的部分。今天大数据学习分享,我们来聊聊Hadoop学习路线。Hadoop生态最初在大数据领域绝对是无可争议的霸主,虽然近年来大数据领域新技术层出不穷,这些新技术确实在很多方面比起Hadoop强,但是Haoop作为最早的、目前来说最成熟的大数据生态,短时间不可能被取代。在学习Hadoop时,主要分为两个阶段:第一阶段基.
2021-06-22 17:44:58
973
转载 大数据开发:大数据技术入门书单
在大数据系统框架当中,Hadoop始终是一个值得关注的重点,经过这么多年的发展,Hadoop依然占据着重要的市场地位。学大数据,必学Hadoop,也说明了Hadoop在大数据当中的重要性。今天的大数据学习分享,给大家带来一份Hadoop技术入门书单。Hadoop作为最早一代的大数据处理技术框架,很多企业最初开始搭建大数据系统框架,都是基于Hadoop来实现的,并且因为Hadoop技术生态圈成熟,所以更加巩固了Hadoop的地位。Hadoop技术入门书单:《Hadoop权威指南:大数据的存储与.
2021-06-22 17:43:15
461
转载 大数据开发:Hadoop的开源架构实现
在大数据开发的任务当中,Java无疑是起到关键性作用的,大数据领域内的主流计算框架,有不少都是基于Java来实现的,比如说我们熟悉的Hadoop,就是Java实现的,这更是巩固了Java在大数据当中的地位。今天的大数据学习分享,我们来聊聊Hadoop开源架构实现。Hadoop作为第一代大数据框架,在业内应用非常广泛,是大数据的代名词,也是分布式计算架构的鼻祖。Hadoop采用Java语言开发,具有良好的跨平台性,并且可部署在廉价的计算机集群中,几乎所有主流厂商都围绕Hadoop进行开发和提供.
2021-06-21 18:00:55
448
转载 大数据开发:基于Hadoop的数据分析平台
互联网的发展,带来了各种数据的爆发式增长,所以接入互联网的相关操作行为,都化为虚拟的数据被记录了下来。大数据时代的带来,一个明显的变化就是全样本数据分析,面对TB/PB级及以上的数据规模,Hadoop始终占据优势。今天的大数据学习分享,我们来聊聊基于Hadoop的数据分析平台。Hadoop在大数据技术生态圈的地位,可以说是难以动摇,经过这么多年的发展,基础核心架构的地位,依然稳固。Hadoop系统的可伸缩性、健壮性、计算性能以及低成本,使得它事实上已成为当前互联网企业主流的大数据分析平台。基.
2021-06-21 17:59:21
3404
转载 大数据开发:Hadoop HDFS是如何保证高可用性的
在Hadoop生态当中,HDFS作为分布式文件系统,主要负责数据存储任务的完成,而越是大规模的数据存储,就需要考虑到高可用性,才能为整个系统框架提供更稳固的底层支持。今天的大数据学习分享,我们就来讲讲,Hadoop HDFS是如何保证高可用性的。从不同的层面来说,HDFS都是为系统的高可用做了相应的准备的,具体来说:1、数据存储故障容错磁盘介质在存储过程中受环境或者老化影响,其存储的数据可能会出现错乱。HDFS的应对措施是,对于存储在DataNode上的数据块,计算并存储校验和(CheckS.
2021-06-18 17:43:27
1506
转载 大数据开发:Hadoop HDFS安全模式
HDFS作为Hadoop框架下的分布式文件系统,其中包括的知识点是非常繁杂的,尤其在理论学习阶段,如果不多花点时间学透彻,在后续的学习当中也会拖累学习进度。今天的大数据开发学习分享,我们就来讲讲Hadoop HDFS安全模式相关的问题。安全模式是hadoop的一种保护机制,用于保证集群中的数据块的安全性。当集群启动的时候,会首先进入安全模式,当系统处于安全模式时会检查数据块的完整性。假设我们设置的副本数(即参数dfs.replication)是5,那么在datanode上就应该有5个副本存在.
2021-06-18 17:42:03
212
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅