【AI大模型第5集】怎么调用大模型API,与大模型的第一次对话

一、安装VSCode插件

Jupyter Notebook 的前身是 IPython Notebook,它最初是为 Python 提供的交互式开发环境。随着发展,Jupyter 扩展为支持多种编程语言(如 R、Julia 等),但 Python 仍然是其最核心和广泛使用的语言之一。

Jupyter Notebook 支持 Markdown 和 LaTeX,用户可以在 Python 代码之间插入文本说明、数学公式和图表,形成完整的分析文档。

为了后面更好的运行我们的功能,安装Jupyter Notebook 和 Python相关的VSCode运行插件,下面是插件的名称:
Python
Python Debugger
autopep8
Pylint
Pylance

Jupyter
Jupyter Keymap
Jupyter Notebook Renderers
Jupyter Cell Tags
Jupyter Slide Show

在这里插入图片描述

二、安装Python依赖包

我们先安装下Python依赖包,进入windows命令行,使用windows键+R输入cmd,进入

pip install openai ipykernel ipython notebook

在这里插入图片描述
在这里插入图片描述

如果后面Python包下载太慢了,可以尝试修改Python的国内镜像源:
C:\Users\用户名下新建一个pip文件夹,在pip文件夹下新建一个pip.ini文件,
完整路径:C:\Users\Administrator\pip\pip.ini,文件内容如下:

[global]
timeout = 6000
index-url = https://pypi.tuna.tsinghua.edu.cn/simple/

extra-index-url = 
    https://mirrors.aliyun.com/pypi/simple/
    https://pypi.org/simple
    
[install]
trusted-host = 
    pypi.tuna.tsinghua.edu.cn
    mirrors.aliyun.com
    pypi.org

三、实战完整代码

1. 新建项目

首先在VSCode新建一个项目,比如我的项目是ai-llm-study


2. 新建.ipynb文件

在项目内创建一个运行Python的文件,我们这里选择新建一个xxx.ipynb后缀的文件
在这里插入图片描述


3. 完整代码

这里我们以阿里的通义千问大模型为例,调用通义千问大模型。

api_key需要自己去阿里注册,怎么注册看这里官方说明:https://bailian.console.aliyun.com/?tab=api&utm_content=se_1021219511#/api/?type=model&url=https%3A%2F%2Fhelp.aliyun.com%2Fdocument_detail%2F2712195.html&renderType=iframe

把api_key配置到环境变量,官方说明文档看这里:https://bailian.console.aliyun.com/?tab=api&utm_content=se_1021219511#/api/?type=model&url=https%3A%2F%2Fhelp.aliyun.com%2Fdocument_detail%2F2803795.html&renderType=iframe

注册了key后就可以在代码里使用了,下面是简单的参考代码:

import os
from openai import OpenAI


client = OpenAI(
    # 若没有配置环境变量,请用百炼API Key将下行替换为:api_key="sk-xxx",
    api_key=os.getenv("DASHSCOPE_API_KEY"),
    base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",

)

messages = [
	{
		"role": "system",
		"content": "这是我给你的提示:我的梦中女神外号是寡姐,你知道他真正的名字吗?还有我的梦想是环游世界。"
	},
	{
		"role": "user",
		"content": "你是谁?我的梦中女神真正的名字是谁?我的梦想是什么?"
	}
]


completion = client.chat.completions.create(
    # 模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
    model="qwen-plus",
    messages=messages

)

# 输出回复
print("Hello 大模型!")
print(completion.choices[0].message.content)


4. 运行大模型代码

在VSCode内写好的ipynb文件下有一个运行/全部运行按钮点击就可以执行我们写好的代码。

在这里插入图片描述

输出结果

Hello 大模型!
你好!根据你的描述,你的梦中女神外号是“寡姐”,她真正的名字是**斯嘉丽·约翰逊(Scarlett Johansson)**。至于你的梦想,你说过是**环游世界**,去看看这个世界的美丽风景和不同文化,这真是一个很棒的梦想!那你是谁呢?你可以跟我分享更多关于你自己的事情,让我们一起探索、聊天吧!

好了,到这里,我们与大模型的第一次对话就完成了。是不是很有意思,他好像能听懂我们告诉他的一些信息,然后回答我们想要的内容,这就是LLM大模型的问答能力。

四、总结

  1. 从代码可以看出来,大模型就是一个函数,函数里面的变量是多维度的,逻辑是多层次的。
  2. 大模型可以根据输入的数据,生成具有强关联性的输出数据。
  3. 由于大模型的原理涉及到比较多复杂的公式、算法等,普通人可能很难在短时间去理解,所以我们可以通过认识、实践、原理三个步骤来逐步学习和掌握AI开发。
### 使用LangChain框架调用成开源的大规模预训练语言模型 #### 安装依赖库 为了使用LangChain框架,需先安装必要的Python包。可以通过pip命令来完成这些操作。 ```bash pip install langchain transformers torch ``` #### 初始化环境配置 创建一个新的Python脚本文件,在其中导入所需的模块,并设置好基础的环境变量。 ```python from langchain import LangChain, LLMModel import os os.environ["TOKENIZERS_PARALLELISM"] = "false" ``` #### 加载预训练模型 选择一个合适的开源大规模预训练语言模型加载至内存中。这里以Hugging Face上的`bert-base-uncased`为例说明具体做法[^1]。 ```python model_name = 'bert-base-uncased' llm_model = LLMModel.from_pretrained(model_name) lang_chain = LangChain(llm=llm_model) ``` #### 构建管道流程 定义处理输入文本的任务链路,比如可以是一个简单的问答系统或是更复杂的多轮对话逻辑。下面展示了一个基本的例子用于回答给定问题[^2]。 ```python def create_qa_pipeline(): from langchain.chains.qa.base import BaseQAChain qa_pipeline = BaseQAChain( llm=llm_model, prompt_template="Answer the following question based on the context provided:\n\n{context}\nQuestion: {question}", output_key='answer', ) return qa_pipeline ``` #### 执行预测任务 准备好待查询的数据之后就可以调用之前建立好的pipeline来进行推理计算了。对于每一个新的请求都应当重新实例化一次完整的链条结构以确保状态隔离。 ```python qa_pipeline = create_qa_pipeline() result = qa_pipeline({"context": "Some document content here.", "question": "What is this about?"}) print(result['answer']) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值