大模型助力开发:生态、挑战与思维转变

一、大模型辅助开发生态

在当今的软件开发领域,大模型正逐渐成为不可或缺的一部分,其应用生态日益丰富。当前市面上不乏各类工具,如GitHub Copilot、ChatGPT等,它们通过不同方式协助程序员提高工作效率。这些工具不仅能帮助程序员自动补全代码,还能在一定程度上优化代码结构。然而,大模型并非万能,它们的表现很大程度上依赖于输入数据的质量和上下文的准确性。

因此,在使用这些工具时,程序员必须具备足够的经验和判断力,以便充分发挥其潜力。

二、利用大模型开发的模式

大模型虽能提供一定程度的支持,但无法完全替代人类的创造力和判断力。在实际项目中,程序员需要根据具体需求进行细致的规划和设计,同时还需考虑代码与现有系统的兼容性。此外,如何有效利用大模型生成的建议也是一门学问,这需要程序员具备一定的经验积累和敏锐的洞察力。因此,在面对复杂项目时,仅依赖大模型是不够的,还需结合自身经验进行综合判断。

利用大模型开发的模式可以总结为以下几个关键点:

  • 获取信息和启发:

大模型可以作为一个信息获取和启发提供的工具,帮助开发者在编码任务中快速获取所需的信息和解决方案的灵感。

  • 结伴完成任务(Copilot):

类似于GitHub Copilot的功能,大模型可以作为开发人员的“伙伴”,辅助完成编码任务,提供代码建议和自动补全。

  • 独立完成任务:

大模型可以独立执行一些编码任务,尤其是在那些可以明确定义且结构化良好的任务中。

  • 代码评审/优化:

大模型可以辅助进行代码评审,提供优化建议,帮助提高代码质量和性能。
缺- 陷修复:

在代码维护阶段,大模型可以帮助定位和修复代码中的缺陷,减少人工审查的工作量。

  • 依赖经验知识的编码任务:

大模型在辅助开发时,可以依赖于项目代码、经验知识以及通过框架完成任务的方法描述,提供更加精准的辅助。

三、实战案例


大模型辅助编程领域涵盖了编码任务、设计任务、开发规划和需求任务,这些任务分别关注于实现功能、系统架构、项目计划和需求分析。

在知识依赖方面,任务的完成可以依赖于个人或团队的经验知识,或者仅依赖于项目代码本身。

方法类型则包括偏抽象的方法,如通过框架实现任务的高层次策略和原则,以及偏具体的实例,如具体的代码示例和项目实践。

这些要素共同构成了大模型辅助编程的复杂性和多样性,要求开发者在遵循设计原则的同时,灵活运用经验和知识来解决实际问题。

(1)分析任务难度

在实际开发过程中,任务的难度不仅取决于大模型的能力,如规划推理、指令遵从、窗口长度、注意力和输出倾向等,还涉及到单次生成内容的复杂度和编码任务的特点。

任务难度体现在原子任务的理解和推理难度上,尤其是当任务封闭性高时,推理难度极大。此外,所依赖的可复用私有知识的复杂度也是一个挑战,因为私有知识量大、隐蔽,且复用程度不一。

同时,为任务准备一次性信息的难度也很大,这包括需求的定义、实现方法和细节的提示,以及任务特定数据的展示,这些工作可能非常繁琐。

总的来说,这部分内容揭示了在开发真实需求时,如何准确评估和应对任务的复杂性,以及如何有效地利用大模型辅助来提高开发效率和质量。

(2)⼀个例⼦

例子,展示了如何通过人工任务规划和基于现有代码增加端对端流式会话功能,来实现一个具体的开发需求。

右边:是根据GPT4所编写的一个提示词。

这个过程涉及到参考已有的短连接方法逻辑,定义实现步骤,包括修改pom.xml添加依赖、在服务类中定义新方法、增加会话服务类中的方法以及新建控制器来实现websocket流式会话,最后通过配置类支持websocket端的流式通信,从而完成整个开发流程。

这个例子强调了在实际项目中,如何结合人工经验和大模型辅助来应对开发中的复杂性和挑战。

四、辅助开发的提示词框架

提示词框架是一个用于指导和优化大模型辅助开发过程中知识应用的结构化方法。它涉及以下几个核心组成部分:

  • Persona & Goal:

这部分涉及理解用户(Persona)的需求和目标(Goal),尽管在当前大模型的能力下,这一部分可能被视为可有可无。

  • Project Context:

提供了项目的上下文信息,通常包括项目文件目录和代码文件。这些信息可以作为默认的上下文,并且可以通过RAG(Retrieval-Augmented Generation)的方式进行组装。

  • Task Experience:

来源于复用的经验知识,它包括了过去任务的执行经验,这些经验可以被用来指导当前或未来的任务。

  • Response Constraints:

这部分说明了对输出内容和格式的约束,确保生成的结果符合特定的要求或标准。

  • Task Description & Tips:

提供了具体任务的描述和实现提示,帮助明确任务的目标和执行过程中需要注意的细节。

这个框架强调了在特定的上下文(基于什么)下,应用相应的经验(怎么干),以完成特定的任务(干什么)。开发者从知识生产和消费的角度思考问题,强调了在遵循设计和利用历史记录中加工经验知识的重要性。通过这种方式,框架旨在释放人的精力,提高效率。

具体的表达形式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据Ai指北

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值