
对检索系统中部署的模型进行更新迭代,是提升检索精度、改善用户体验的必经之路。
在传统的检索模型升级过程中,需要先用新模型离线刷新底库中的所有特征(称之为特征“回填”),再将新模型部署上线,这一过程被称之冷刷新模型升级。
大规模检索系统往往存在海量的底库图像,将其全部离线刷新一遍可能花费数周乃至数月,冷刷新模型升级存在模型迭代的时间成本高、用户体验不能得到即时改善等几大弊端。
针对以上现象,本期 AI Drive,清华大学计算机科学与技术专业在读硕士生-张斌杰,在线解读其发表在 ICLR 2022的最新研究成果:基于退化缓解兼容训练的热刷新模型升级。这项研究首次提出热刷新模型升级方案,借助兼容学习使得新模型可以直接部署上线,同时利用新模型在线刷新底库特征,实现检索精度的逐步爬升。

张斌杰,清华大学计算机科学与技术专业在读硕士生,研究方向包括Compatible Representation Learning以及Cross-Modality Video Understanding。目前是腾讯ARC Lab的实习生。
本次分享的具体内容有(关注公众号“数据实战派”,按指示回复关键词可获得本文ppt,文末视频号看观看本期回放):
1.研究背景
2.难点与挑战
3.研究方法介绍
4.结果分析
5.未来展望
一、研究背景

对于检索系统而言,需要给定输入图片,将其称之为检索图片,之后检索系统需要从候选图片库,也就是gallery当中去搜索与查询图片相关的图片,并返还给用户,这个过程称之为图像检索。
在真实的检索过程当中,实际上是根据图片与图片之间特征相似度判断他们之间的视觉相似度 。
对于传统的模型升级而言,传统的冷刷新式模型升级一般分为两步骤,第一步是训练完一个新模型之后,用新模型取代旧模型进行重新部署。第二步需要用重新部署的新模型去将所有的候选图片库,也就是gallery当中的所

针对检索模型升级的时间成本高和用户体验延迟问题,研究提出热刷新模型升级方案,通过兼容学习使新模型无需回填即可上线。同时,该研究分析了模型退化现象并提出退化缓解的兼容训练方法,以减少性能下降。在实验中,这种方法有效缓解了模型退化并提高了升级效率。
最低0.47元/天 解锁文章
471

被折叠的 条评论
为什么被折叠?



