# 2018江苏高考数学第16题计算量大不大你自己看着办

2018江苏高考数学在一片简单、计算量大的喧闹声中落下帷幕。历年来，“数学帝”、“难”、“创新”、“数列”早已给江苏高考数学打上了固有标签，考前考后都受到无数江苏非江苏考生的关注，成为了难易评判的一个衡量标准.

16.已知$\alpha ,\beta$$\alpha,\beta$为锐角,$\mathrm{tan}\alpha =\frac{4}{3},\mathrm{cos}\left(\alpha +\beta \right)=-\frac{\sqrt{5}}{5}.$$\tan\alpha=\dfrac43,\cos(\alpha+\beta)=-\dfrac{\sqrt5}{5}.$
(1)求$\mathrm{cos}2\alpha$$\cos2\alpha$的值;
(2)求$\mathrm{tan}\left(\alpha -\beta \right)$$\tan(\alpha-\beta)$的值.

# 我的思路：

$\left(1\right)\mathrm{cos}2\alpha =\frac{1-{\mathrm{tan}}^{2}\alpha }{1+{\mathrm{tan}}^{2}\alpha }$$(1)\cos2\alpha=\dfrac{1-\tan^2\alpha}{1+\tan^2\alpha}$$=\frac{1-\left(\frac{4}{3}{\right)}^{2}}{1+\left(\frac{4}{3}{\right)}^{2}}$$=\dfrac{1-(\frac43)^2}{1+(\frac43)^2}$$=-\frac{7}{25}$$=-\dfrac{7}{25}$

Tips:这个公式是万能置换，类似的还有 $\mathrm{sin}2\alpha =\frac{2\mathrm{tan}\alpha }{1+{\mathrm{tan}}^{2}\alpha }$$\sin2\alpha=\dfrac{2\tan\alpha}{1+\tan^2\alpha}$
$\mathrm{tan}2\alpha =\frac{2\mathrm{tan}\alpha }{1+{\mathrm{tan}}^{2}\alpha }$$\tan2\alpha=\dfrac{2\tan\alpha}{1+\tan^2\alpha}$

(2)$\alpha ,\beta$$\alpha,\beta$为锐角，$\therefore 2\alpha ,\alpha +\beta$$\therefore2\alpha,\alpha+\beta$为钝角,
$\therefore \mathrm{tan}2\alpha <0,\mathrm{tan}\left(\alpha +\beta \right)<0.$$\therefore \tan2\alpha<0,\tan(\alpha+\beta)<0.$
$\mathrm{tan}2\alpha =-\sqrt{\frac{1}{{\mathrm{cos}}^{2}2\alpha }-1}$$\tan2\alpha=-\sqrt{\dfrac{1}{\cos^22\alpha}-1}$ $=-\sqrt{\left(-\frac{25}{7}{\right)}^{2}-1}=-\frac{24}{7},$$=-\sqrt{(-\dfrac{25}{7})^2-1} =-\dfrac{24}{7},$
$\mathrm{tan}\left(\alpha +\beta \right)=-\sqrt{\frac{1}{{\mathrm{cos}}^{2}\left(\alpha +\beta \right)}-1}$$\tan(\alpha+\beta)=-\sqrt{\dfrac{1}{\cos^2(\alpha+\beta)}-1}$$=-\sqrt{5-1}=-2,$$=-\sqrt{5-1}=-2,$

$\mathrm{tan}\left(\alpha -\beta \right)=\mathrm{tan}\left[2\alpha -\left(\alpha +\beta \right)\right]=\frac{\mathrm{tan}2\alpha -\mathrm{tan}\left(\alpha +\beta \right)}{1+\mathrm{tan}2\alpha \mathrm{tan}\left(\alpha +\beta \right)}$$\tan(\alpha-\beta)=\tan[2\alpha-(\alpha+\beta)]=\dfrac{\tan2\alpha-\tan(\alpha+\beta)}{1+\tan2\alpha\tan(\alpha+\beta)}$
$=\frac{-\frac{24}{7}-\left(-2\right)}{1+\left(-\frac{24}{7}\right)\left(-2\right)}$$=\dfrac{-\frac{24}{7}-(-2)}{1+(-\frac{24}{7})(-2)}$$=-\frac{2}{11}$$=-\dfrac{2}{11}$

Tips: 利用构造直角三角形法来求三角函数值是比较简便的，在求两个正切值的时候也可以这样做：先求函数值的绝对值，

$\begin{array}{ccc}3& 4& 5\\ 5& 12& 13\\ 7& 24& 25\\ 8& 15& 17\\ 9& 49& 41\\ 11& 60& 61\\ \cdots & \cdots & \cdots \end{array}$

$\alpha ,\beta$$\alpha,\beta$为锐角，$\therefore 2\alpha ,\alpha +\beta$$\therefore2\alpha,\alpha+\beta$为钝角,
$\therefore \mathrm{sin}2\alpha >0,\mathrm{sin}\left(\alpha +\beta \right)>0.$$\therefore \sin2\alpha>0,\sin(\alpha+\beta)>0.$
$\because \mathrm{cos}2\alpha =-\frac{7}{25},\mathrm{cos}\left(\alpha +\beta \right)=-\frac{\sqrt{5}}{5},$$\because\cos2\alpha=-\dfrac{7}{25},\cos(\alpha+\beta)=-\dfrac{\sqrt{5}}{5},$
$\therefore \mathrm{sin}2\alpha =\sqrt{1-{\mathrm{cos}}^{2}2\alpha }=\frac{24}{25},$$\therefore\sin2\alpha=\sqrt{1-\cos^22\alpha}=\dfrac{24}{25},$
$\mathrm{sin}\left(\alpha +\beta \right)=\sqrt{1-{\mathrm{cos}}^{2}\left(\alpha +\beta \right)}=\frac{2\sqrt{5}}{5}.$$\sin(\alpha+\beta)=\sqrt{1-\cos^2(\alpha+\beta)}=\dfrac{2\sqrt5}{5}.$
$\mathrm{tan}2\alpha =\frac{\mathrm{sin}2\alpha }{\mathrm{cos}2\alpha }=-\frac{24}{7},$$\tan2\alpha=\dfrac{\sin2\alpha}{\cos2\alpha}=-\dfrac{24}{7},$
$\mathrm{tan}\left(\alpha +\beta \right)=\frac{\mathrm{sin}\left(\alpha +\beta \right)}{\mathrm{cos}\left(\alpha +\beta \right)}=-2.$$\tan(\alpha+\beta)=\dfrac{\sin(\alpha+\beta)}{\cos(\alpha+\beta)}=-2.$其它同上.