【运筹学】线性规划 最优解分析 ( 唯一最优解 | 无穷多最优解 | 无界解 | 无可行解 | 迭代范围 | 求解步骤 )





一、唯一最优解



使用单纯形法求解线性规划时 , 得到最优解时 , 所有的非基变量对应的检验数都小于 0 0 0 , 该线性规划有唯一最优解 ;





二、无穷多最优解



使用单纯形法求解线性规划时 , 得到最优解时 , 存在一个或多个非基变量对应的检验数等于 0 0 0 , 那么该线性规划有无穷多最优解 ;





三、无界解



使用单纯形法求解线性规划时 , 某个非基变量 x j x_j xj , 其对应的检验数 σ j ≤ 0 \sigma_j \leq 0 σj0 , 但是该非基变量的所有系数都是小于等于 0 0 0 的 , 此时该线性规划有 无界解 ;





四、无可行解



使用人工变量法 ( 大 M M M 单纯形法 ) 求解线性规划 , 得到最优解时 , 此时基变量中还存在人工变量 , 人工添加的变量没有迭代出去 , 这种情况下 , 该线性规划没有可行解 ;





五、线性规划迭代范围



线性规划迭代范围 :

  • 无限范围 : 首先迭代的范围是 无穷多元素的 可行解 的集合 ;

  • 有限范围 : 缩小该迭代范围为 有限个元素的 基可行解 集合 ;





六、线性规划求解步骤



线性规划求解步骤 :

  • 初始 : 找到初始基可行解 ;

  • 最优 : 最优解判定准则 ;

  • 迭代 : 如果不是最优解 , 如何进行下一次迭代 ;

©️2020 CSDN 皮肤主题: 创作都市 设计师:CSDN官方博客 返回首页