【集合论】序关系 : 总结 ( 偏序关系 | 偏序集 | 可比 | 严格小于 | 覆盖 | 哈斯图 | 全序关系 | 拟序关系 | 偏序关系八种特殊元素 | 链 | 反链 ) ★★

34 篇文章 99 订阅



参考博客 :





一、偏序关系



偏序关系 :

给定非空集合 A A A , A ≠ ∅ A \not= \varnothing A= , R R R 关系是 A A A 集合上的二元关系 , R ⊆ A × A R \subseteq A \times A RA×A ,
如果 R R R 关系满足以下性质 :

  • 自反 : 关系图中所有顶点 都有环 ;
  • 反对称 : 两个顶点之间 有 0 0 0 个或 1 1 1 个有向边 ;
  • 传递 : 前提 a → b , b → c a \to b , b\to c ab,bc 不成立 默认传递 ; 前提 a → b , b → c a \to b , b\to c ab,bc 成立 必须满足 a → c a \to c ac 存在 ;

则称 R R R 关系是 A A A 集合上的 偏序关系 ;

偏序关系表示 : 使用 ≼ \preccurlyeq 符号表示偏序关系 , 读作 “小于等于” ;

符号化表示 : < x , y > ∈ R ⇔ x R y ⇔ x ≼ y <x,y> \in R \Leftrightarrow xRy \Leftrightarrow x \preccurlyeq y <x,y>RxRyxy , 解读 : < x , y > <x,y> <x,y> 有序对在偏序关系 R R R 中 , 则 x x x y y y 之间有 R R R 关系 , x x x 小于等于 y y y ;


等价关系 是用于 分类 的 , 偏序关系 是用于 组织 的 , 在每个类的内部 , 赋予一个结构 ;


参考博客 : 【集合论】序关系 ( 偏序关系 | 偏序集 | 偏序集示例 )





二、偏序集



偏序集 :

≼ \preccurlyeq 关系 是 A A A 集合上的偏序关系 , 则称 集合 A A A偏序关系 ≼ \preccurlyeq 构成的 有序对 < A , ≼ > <A, \preccurlyeq> <A,> 称为偏序集 ;

如果集合上有偏序关系 , 那么这个集合就称为偏序集 ;


参考博客 : 【集合论】序关系 ( 偏序关系 | 偏序集 | 偏序集示例 )





三、可比



可比 :

A A A 集合 , 该集合上存在 偏序关系 ≼ \preccurlyeq 小于等于 ,

偏序集 是 集合 和 偏序关系 组成的有序对 < A , ≼ > <A, \preccurlyeq> <A,> ,

x , y x, y x,y A A A 集合中的两个元素 , x , y ∈ A x , y \in A x,yA ,

要么是 x ≼ y x \preccurlyeq y xy , 要么就是 y ≼ x y \preccurlyeq x yx , 符号化表示是 x ≼ y ∨ y ≼ x x \preccurlyeq y \lor y \preccurlyeq x xyyx , 两种情况必选其一 ,

则称 x x x y y y 是可比的 ;


只要 x , y x, y x,y 之间 存在偏序关系 , 不管谁在前 , 谁在后 , 都 统一称 x x x y y y 是可比的 ;


参考博客 : 【集合论】序关系 ( 偏序集元素之间的关系 | 可比 | 严格小于 | 覆盖 | 哈斯图 )





四、严格小于



严格小于 概念需要基于 可比概念


严格小于 :

A A A 集合 与 A A A 上偏序关系 ≼ \preccurlyeq , 组成 偏序集 < A , ≼ > <A, \preccurlyeq> <A,> ,

x , y x, y x,y A A A 集合中的两个元素 , x , y ∈ A x , y \in A x,yA ,

如果 x , y x , y x,y 是可比的 ( x , y x,y x,y 之间存在偏序关系 ) , 但是 x x x y y y 不相等 , 则称 x x x 严格小于 y y y ;


符号化表示 : x ≼ y ∧ x ≠ y ⇔ x ≺ y x \preccurlyeq y \land x \not= y \Leftrightarrow x \prec y xyx=yxy


参考博客 : 【集合论】序关系 ( 偏序集元素之间的关系 | 可比 | 严格小于 | 覆盖 | 哈斯图 )





五、覆盖



覆盖 概念需要基于 严格小于概念


覆盖 :

A A A 集合 与 A A A 上偏序关系 ≼ \preccurlyeq , 组成 偏序集 < A , ≼ > <A, \preccurlyeq> <A,> ,

x , y , z x, y , z x,y,z A A A 集合中的元素 , x , y , z ∈ A x , y , z \in A x,y,zA ,

x x x 严格小于 y y y , x ≺ y x \prec y xy ,

不存在 z z z , 使 x x x 严格小于 z z z , 并且 z z z 严格小于 y y y ,

则称 y y y 覆盖 x x x ; ( 注意是 大 覆盖 小 )


偏序关系中 大 覆盖 小


符号化表示 : x ≺ y ∧ ¬ ∃ z ( z ∈ A ∧ x ≺ y ≺ z ) x \prec y \land \lnot \exist z( z \in A \land x \prec y \prec z ) xy¬z(zAxyz)


参考博客 : 【集合论】序关系 ( 偏序集元素之间的关系 | 可比 | 严格小于 | 覆盖 | 哈斯图 )





六、哈斯图



A A A 集合 A A A 上偏序关系 ≼ \preccurlyeq , 组成 偏序集 < A , ≼ > <A, \preccurlyeq> <A,> ,

x , y x, y x,y A A A 集合中的两个元素 , x , y ∈ A x , y \in A x,yA ,


哈斯图 :

① 顶点 : 使用 顶点 表示 A A A 集合中的元素 ;

② 无向边 : 当且仅当 y y y 覆盖 x x x , y y y 顶点在 x x x 顶点 上方 , 并且在 x x x 顶点 与 y y y 顶点之间 绘制一条 无向边 ;



在这里插入图片描述

上图是 6 6 6 元集 上的偏序关系 ≼ \preccurlyeq

A A A 元素比 B , C , D B,C,D B,C,D 元素都小

偏序关系是传递的 , A A A B B B 小 , B B B F F F 小 , 因此 A A A F F F

最下面的元素 A A A 是最小的 , 所有的元素都比 A A A 大 ( 包括 A A A , 偏序关系是自反的 )

最上面的元素 F F F 是最大的 , 所有的元素都比 F F F 小 ( 包括 F F F , 偏序关系是自反的 )

B C D E BCDE BCDE 四个元素互相都不可比



哈斯图 与 关系图对比 省略的内容 :

① 环 : 偏序关系是自反的 , 因此 每个顶点上都有环 , 可以省略掉环

② 箭头 : 偏序关系是反对称的 , 因此 两个顶点两两之间肯定没有双向边 , 都是单向边 , 因此可以省略箭头方向

③ 默认方向 : 使用上下位置表示箭头的方向 , 箭头默认向上 , 偏序是 小于等于 , 最小的在最小面, 最大的在最上面 ;


参考博客 :





七、全序关系 ( 线序关系 )



A A A 集合与该集合之上的 偏序关系 ≼ \preccurlyeq 组成的有序对是 : < A , ≼ > <A, \preccurlyeq> <A,> 偏序集 ;

A A A 集合中 任意元素 x , y x, y x,y 都 可比 ;

则称 ≼ \preccurlyeq 关系是 A A A 集合上的 全序关系, 又称为 线序关系 ;

< A , ≼ > <A, \preccurlyeq> <A,> 为全序集 ( 线序集 ) ;



< A , ≼ > <A, \preccurlyeq> <A,> 偏序集 是全序集

当且仅当

< A , ≼ > <A, \preccurlyeq> <A,> 偏序集的哈斯图是一条直线


参考博客 : 【集合论】序关系 ( 全序关系 | 全序集 | 全序关系示例 | 拟序关系 | 拟序关系定理 | 三歧性 | 拟线序关系 | 拟线序集 )





八、拟序关系



非空集合 A A A , 二元关系 R R R A A A 集合上的二元关系 ;

符号化表示 : A ≠ ∅ A \not= \varnothing A= , R ⊆ A × A R \subseteq A \times A RA×A ;

如果 二元关系 R R R反自反 , 传递 的 ,

则称 R R R 关系是 A A A 集合上的拟序关系 ,

使用 ≺ \prec 表示拟序关系 ,

< A , ≺ > <A , \prec> <A,> 是拟序集 ;


偏序关系 ≼ \preccurlyeq 是 小于等于 关系 , 拟序关系 ≺ \prec 就是 严格小于 关系 ;


拟序关系示例 : 大于 , 小于 , 真包含 , 都是拟序关系 ;


拟序关系 完整的性质是 反自反 , 反对称 , 传递 ,
之所以概念中没有提 反对称 性质 , 是因为 根据 反自反 , 传递性质 , 可以推导出 反对称 性质 ;

数学中倾向于使用最小的条件进行定义 , 因此这里将反对称性去掉 ;


参考博客 : 【集合论】序关系 ( 全序关系 | 全序集 | 全序关系示例 | 拟序关系 | 拟序关系定理 | 三歧性 | 拟线序关系 | 拟线序集 )





九、拟序关系相关定理



定理 1 :

非空集合 A A A , A ≠ ∅ A \not= \varnothing A= ,

≼ \preccurlyeq 是非空集合 A A A 上的偏序关系 ,

≺ \prec 是非空集合 A A A 上的拟序关系 ;


① 偏序关系性质 : ≼ \preccurlyeq 自反 , 反对称 , 传递的

② 拟序关系性质 : ≺ \prec 反自反 , 反对称 , 传递的

③ 偏序关系 -> 拟序关系 : 偏序关系 减去 恒等关系 就是 拟序关系 , ≼ − I A = ≺ \preccurlyeq - I_A = \prec IA=

④ 拟序关系 -> 偏序关系 : 拟序关系 与 恒等关系 的并集就是 偏序关系 , ≺ ∪ I A = ≼ \prec \cup I_A = \preccurlyeq IA= ;





定理 2 :

非空集合 A A A , A ≠ ∅ A \not= \varnothing A= ,

≺ \prec 是非空集合 A A A 上的拟序关系 ;


x ≺ y x \prec y xy , x = y x=y x=y , y ≺ x y \prec x yx 中最多有一个成立 ;

使用反证法 , 任意两个成立都会导致 x ≺ x x \prec x xx ;


( x ≺ y ∧ x = y ) ∧ ( y ≺ x ∧ x = y ) ⇒ x = y (x\prec y \land x = y) \land (y \prec x \land x=y) \Rightarrow x = y (xyx=y)(yxx=y)x=y





定理 3 三歧性 , 拟线序 :

非空集合 A A A , A ≠ ∅ A \not= \varnothing A= ,

≺ \prec 是非空集合 A A A 上的拟序关系 ;


如果 x ≺ y x \prec y xy , x = y x=y x=y , y ≺ x y \prec x yx 中仅有一个城里 , 那么称 ≺ \prec 拟序关系 具有 三歧性 ;

有三歧性的 逆序关系 ≺ \prec 称为 A A A 集合上的 拟线序关系 , 又称为拟全序关系 ;

< A ≺ > <A \prec> <A> 被称为 拟线序集 ;


参考博客 : 【集合论】序关系 ( 全序关系 | 全序集 | 全序关系示例 | 拟序关系 | 拟序关系定理 | 三歧性 | 拟线序关系 | 拟线序集 )





十、偏序关系八种特殊元素



参考博客 : 【集合论】序关系 ( 偏序关系中八种特殊元素 | ① 最大元 | ② 最小元 | ③ 极大元 | ④ 极小元 | ⑤ 上界 | ⑥ 下界 | ⑦ 最小上界 上确界 | ⑧ 最小下界 下确界 )





十一、链



< A , ≼ > <A, \preccurlyeq> <A,> 是 偏序集 , B ⊆ A B \subseteq A BA ,

偏序集中一组元素组成集合 B B B , 如果 B B B 集合中的元素两两都可比 , 则称 B B B 集合是该偏序集 < A , ≼ > <A, \preccurlyeq> <A,> 的链 ;

符号化表示 : ∀ x ∀ y ( x ∈ B ∧ y ∈ B → x 与 y 可 比 ) \forall x \forall y ( x \in B \land y \in B \to x 与 y 可比 ) xy(xByBxy)


链的本质是一个集合

∣ B ∣ |B| B 是链的长度

参考博客 :





十二、反链



< A , ≼ > <A, \preccurlyeq> <A,> 是 偏序集 , B ⊆ A B \subseteq A BA ,

偏序集中一组元素组成集合 B B B , 如果 B B B 集合中的元素两两都 不可比 , 则称 B B B 集合是该偏序集 < A , ≼ > <A, \preccurlyeq> <A,> 的 反链 ;

符号化表示 : ∀ x ∀ y ( x ∈ B ∧ y ∈ B ∧ x ≠ y → x 与 y 不 可 比 ) \forall x \forall y ( x \in B \land y \in B \land x\not= y \to x 与 y 不可比 ) xy(xByBx=yxy)


反链的本质是一个集合

∣ B ∣ |B| B 是反链的长度


参考博客 :





十三、链与反链定理



参考博客 :

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值