干货 | 最全的CTF练习网站和在线攻防网站总结

最全的CTF和在线攻防网站总结

这是一份红队/蓝队CTF在线平台列表来测试你学习的技能

1800多个攻防实验室

1800 多个实验室!涵盖 Windows 安全、云安全、密码破解、逆向工程等等。我强烈推荐这个平台!

105c8249737a5c5ebbae11a5556e65a4.png

地址:https://attackdefense.com/members

加密黑客

一个有趣、免费的现代密码学学习平台

3d857b5b35fe463a1ddc15f1156bff0f.png

地址:https://cryptohack.org/

CMD挑战

CMD挑战

90042b9228ca60c7b4a64d63d450ffc3.png

地址:https://cmdchallenge.com/

exploit.education

exploit.education 提供了多种资源,可用于了解漏洞分析、漏洞利用开发、软件调试、二进制分析和一般网络安全问题

32dbc305b5614a45ad44d4b216a1c6b2.png

地址:https://exploit.education/

Defend the Web

Defend the Web 是一个交互式安全平台,可以在其中学习和挑战自己的技能。尝试并完成所有 60 多个黑客挑战级别。

a6fc80d2c301db08c9b6801b2803c766.png

地址:https://defendtheweb.net/

hacksplaining

学习和练习不同的漏洞

860d9b3ab5ea1edce3590ca9b8b24349.png

地址:https://www.hacksplaining.com/lessons

TryHackMe

学习网络安全的一种有趣方式

8270ab1ad9adcd8bdf0940aeb946bb8a.png

地址:https://tryhackme.com/

HackTheBox

一个巨大的黑客游乐场

4827795f292a69efa6f1c53c162c2c05.png

地址:https://www.hackthebox.com/

VulnHub

提供漏洞镜像,让任何人都能在数字安全、计算机软件和网络管理方面获得实际的“动手实操”经验。

5134d04b473bc19bf14d9e4f4532f2de.png

地址:https://www.vulnhub.com/

Root-Me

训练你的黑客技能

85b0d1ab367cbe85bb8ecf7e55b1e4dd.png

地址:https://www.root-me.org/

Root In Jail

与HTB类似

5643535397501a9b7ed0fdb68e19f195.png

地址:https://rootinjail.com/index.html#

OverTheWire

OverTheWire提供的兵棋推演可以帮助您以充满乐趣的游戏形式学习和练习安全概念。

43da254acb19a6ac0e0f1bd4f7fe4e75.png

地址:https://overthewire.org/wargames/

Cryptopals 加密挑战

e67b266e4695f89083452e9226788ec5.png

地址:https://cryptopals.com/

LetsDefend

LetsDefend 通过调查模拟 SOC 中的真实网络攻击,帮助练习者建立具有实践经验的蓝队职业生涯

3552f1f17a5812eb3645015a69a7b785.png

地址:https://letsdefend.io/

Cyber Defenders

蓝队挑战

e622e20a066b4dcfb7c3dc51bade52a3.png

地址:https://cyberdefenders.org/blueteam-ctf-challenges/

W3Challs

提供学习和练习黑客攻击的安全挑战

a6ac68c397397bcb2bae715bba979c30.png

地址:https://w3challs.com/

这些只是我所知道的一些最好的CTF 平台,可能还有更多。欢迎大家在评论区补充推荐

f202fc975d902aaceef51971cf3b504e.png

—  实验室旗下直播培训课程  —

12682963422ddbd77bc1f756b01902ab.jpeg

0fbd85012611c41a377b4ba1b9882ab9.jpegf0219eec54b54af95c9a8af47fd6ac11.png

8e7f0bbd31e06410e80f900b562ed4c9.jpeg

5a42beadd2d7bee59de36da712f07629.jpeg

f506162b5c69a3367da2b628a9d7c7f9.jpeg

0f03ecf6db280b4a35042a0801f970e8.jpeg

cff68af70efe5aad92379636ef8601eb.jpeg


来和20000+位同学加入MS08067一起学习吧!

7e3810c186aef4f46a33ab68574942d0.gif

### 回答1: Spark Streaming Flink 都是流处理框架,但在一些方面有所不同。 1. 数据处理模型 Spark Streaming 基于批处理模型,将流数据分成一批批进行处理。而 Flink 则是基于流处理模型,可以实时处理数据流。 2. 窗口处理 Spark Streaming 的窗口处理是基于时间的,即将一段时间内的数据作为一个窗口进行处理。而 Flink 的窗口处理可以基于时间数据量,可以更加灵活地进行窗口处理。 3. 状态管理 Spark Streaming 的状态管理是基于 RDD 的,需要将状态存储在内存中。而 Flink 的状态管理是基于内存磁盘的,可以更加灵活地管理状态。 4. 容错性 Flink 的容错性比 Spark Streaming 更加强大,可以在节点故障时快速恢复,而 Spark Streaming 则需要重新计算整个批次的数据。 总的来说,Flink 在流处理方面更加强大灵活,而 Spark Streaming 则更适合批处理数据仓库等场景。 ### 回答2: Spark Streaming Flink 都是流处理框架,它们都支持低延迟的流处理高吞吐量的批处理。但是,它们在处理数据流的方式性能上有许多不同之处。下面是它们的详细比较: 1. 处理模型 Spark Streaming 采用离散化流处理模型(DPM),将长周期的数据流划分为离散化的小批量,每个批次的数据被存储在 RDD 中进行处理,因此 Spark Streaming 具有较好的容错性可靠性。而 Flink 采用连续流处理模型(CPM),能够在其流处理过程中进行事件时间处理状态管理,因此 Flink 更适合处理需要精确时间戳状态管理的应用场景。 2. 数据延迟 Spark Streaming 在处理数据流时会有一定的延迟,主要是由于对数据进行缓存离散化处理的原因。而 Flink 的数据延迟比 Spark Streaming 更低,因为 Flink 的数据处理计算过程是实时进行的,不需要缓存离散化处理。 3. 机器资源负载均衡 Spark Streaming 采用了 Spark 的机器资源调度负载均衡机制,它们之间具有相同的容错资源管理特性。而 Flink 使用 Yarn Mesos 等分布式计算框架进行机器资源调度负载均衡,因此 Flink 在大规模集群上的性能表现更好。 4. 数据窗口处理 Spark Streaming 提供了滑动、翻转窗口操作等灵活的数据窗口处理功能,可以使用户更好地控制数据处理的逻辑。而 Flink 也提供了滚动窗口滑动窗口处理功能,但相对于 Spark Streaming 更加灵活,可以在事件时间处理时间上进行窗口处理,并且支持增量聚合全量聚合两种方式。 5. 集成生态系统 Spark Streaming 作为 Apache Spark 的一部分,可以充分利用 Spark 的分布式计算批处理生态系统,并且支持许多不同类型的数据源,包括Kafka、FlumeHDFS等。而 Flink 提供了完整的流处理生态系统,包括流SQL查询、流机器学习流图形处理等功能,能够灵活地适应不同的业务场景。 总之,Spark Streaming Flink 都是出色的流处理框架,在不同的场景下都能够发挥出很好的性能。选择哪种框架取决于实际需求业务场景。 ### 回答3: Spark StreamingFlink都是流处理引擎,但它们的设计实现方式有所不同。在下面的对比中,我们将比较这两种流处理引擎的主要特点差异。 1. 处理模型 Spark Streaming采用离散流处理模型,即将数据按时间间隔分割成一批一批数据进行处理。这种方式可以使得Spark Streaming具有高吞吐量低延迟,但也会导致数据处理的粒度比较粗,难以应对大量实时事件的高吞吐量。 相比之下,Flink采用连续流处理模型,即数据的处理是连续的、实时的。与Spark Streaming不同,Flink的流处理引擎能够应对各种不同的实时场景。Flink的实时流处理能力更强,因此在某些特定的场景下,它的性能可能比Spark Streaming更好。 2. 窗口计算 Spark Streaming内置了许多的窗口计算支持,如滑动窗口、滚动窗口,但支持的窗口计算的灵活性较低,只适合于一些简单的窗口计算。而Flink的窗口计算支持非常灵活,可以支持任意窗口大小或滑动跨度。 3. 数据库支持 在处理大数据时,存储读取数据是非常重要的。Spark Streaming通常使用HDFS作为其数据存储底层的系统。而Flink支持许多不同的数据存储形式,包括HDFS,以及许多其他开源商业的数据存储,如Kafka、CassandraElasticsearch等。 4. 处理性能 Spark Streaming的性能比Flink慢一些,尤其是在特定的情况下,例如在处理高吞吐量的数据时,在某些情况下可能受制于分批处理的架构。Flink通过其流处理模型不同的调度器优化器来支持更高效的实时数据处理。 5. 生态系统 Spark有着庞大的生态系统,具有成熟的ML库、图处理库、SQL框架等等。而Flink的生态系统相对较小,但它正在不断地发展壮大。 6. 规模性 Spark Streaming适用于规模小且不太复杂的项目。而Flink可扩展性更好,适用于更大、更复杂的项目。Flink也可以处理无限制的数据流。 综上所述,Spark StreamingFlink都是流处理引擎,它们有各自的优缺点。在选择使用哪一个流处理引擎时,需要根据实际业务场景需求进行选择。如果你的业务场景较为复杂,需要处理海量数据并且需要比较灵活的窗口计算支持,那么Flink可能是更好的选择;如果你只需要简单的流处理一些通用的窗口计算,Spark Streaming是更为简单的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值