系列解读Dropout

本文主要介绍Dropout及延伸下来的一些方法,以便更深入的理解。想要提高CNN的表达或分类能力,最直接的方法就是采用更深的网络和更多的神经元,即deeper and wider。但是,复杂的网络也意味着更加容易过拟合。于是就有了Dropout,大部分实验表明其具有一定的防止过拟合的能力。

2016-01-25 16:04:10

阅读数:4773

评论数:0

多尺度竞争卷积

此次所讲内容来自《Competitive Multi-scale Convolution》, 时间节点2015.121-模型先来看看作者最开始设计的模型:这里着重说明一下Maxout:从r1、r2、r3、r4中选择最大的响应作为输出。由于K*K大小的卷积操作中都采取了pad=K/2、stride=...

2016-01-12 15:40:46

阅读数:3045

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭