当前搜索:

caffe层解读系列——Data以及ImageData层用法

直接举一个data层的使用例子:layer { name: "cifar" type: "Data" top: "data" top: "label" include { phase: TR...
阅读(5814) 评论(13)

模型压缩——将模型复杂度加入loss function

这里介绍2017ICLR OpenReview中的一篇有关网络压缩的文章《Training Compressed Fully-Connected Networks with a Density-Diversity Penalty》。 **看文章标题就知道主要是针对全连接层的,由此我的好感就下降了一...
阅读(2051) 评论(0)

DeepRebirth——通过融合加速网络

这里介绍2017ICLR OpenReview中的一篇有关网络加速的文章《DeepRebirth: A General Approach for Accelerating Deep Neural Network Execution on Mobile Devices》。 看文章标题觉得高大上,看方...
阅读(2753) 评论(0)

C++ Map常见用法说明

C++中map提供的是一种键值对容器,里面的数据都是成对出现的,如下图:每一对中的第一个值称之为关键字(key),每个关键字只能在map中出现一次;第二个称之为该关键字的对应值。一. 声明//头文件 #include<map>map<int, string> ID_Name...
阅读(35796) 评论(3)

深度模型一些新的运行框架或者辅助库工具等

主要记录一些新的深度学习有关的框架工具等,以作个人备份:(1) Android手机上的GPU加速DCNN(运行)库CNNdroid文章《CNNdroid: GPU-Accelerated Execution of Trained Deep Convolutional Neural Network...
阅读(3870) 评论(0)

caffe层解读系列——hinge_loss

—————————— Hinge Loss 定义 ——————————Hinge Loss 主要针对要求”maximum-margin”的分类问题,因此尤其适用于SVM分类。Hinge Loss的定义如下:\(l(y) = max(0,1-t\cdot y)\)其中, \(t=\pm1\) , 需...
阅读(3436) 评论(0)

1 - 基于卡方检验的特征选择

基于卡方检验的特征选择,更多也可参考http://nlp.stanford.edu/IR-book/html/htmledition/feature-selectionchi2-feature-selection-1.html———————— 原理简介 ———————— 卡方检验(\(\chi...
阅读(5128) 评论(0)
    个人资料
    持之以恒
    等级:
    访问量: 78万+
    积分: 7596
    排名: 3574