Doris实战——天眼查Doris实时数仓构建

目录

前言

一、业务背景

二、原有架构及痛点

三、理想架构

四、技术选型

五、新数仓架构

六、应用场景优化

6.1 人群圈选

6.2 C端分析数据及精准营销线索场景

七、优化经验

八、规模和收益

九、未来规划


    原文大佬的这篇实时数仓构建有借鉴意义的,这些摘抄下来用作沉淀学习。如有侵权,请告知~

前言

     天眼查作为商业查询平台,目前已收录全国3亿多家社会实体信息,300多种维度信息及时更新,致力于构建商业安全,从而实现“公平看清世界”。随着近年来对产品的持续深耕和迭代,用户数量也在不断攀升,业务的突破更加依赖于数据赋能,精细化的用户/客户运营也成为提升体验、促进消费的重要动力。在这样的背景下正式引入 Doris对数仓架构进行升级改造,实现了数据门户的统一,大大缩短了数据处理链路,数据导入速率提升75%,500万及以下人群圈选可以实现毫秒级响应。

一、业务背景

    天眼查的数据仓库主要服务于三个业务场景,每个场景都有其特点和需求,具体如下:

  • 亿级用户人群圈选:人群圈选场景中目前有100+人群包,需要根据 SQL 条件圈选人群包,来支持人群包的交并差、人群包实时圈选和人群包更新通知
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值