深度学习笔记_卷积神经网络参数计算

卷积后卷积层大小

  • W2= (W1-F+2P)/S +1
  • 即 (原始图像的宽度-卷积核的宽度+2倍的填充宽度)/步长 + 1
  • 采用K个大小为FxF的卷积核,进行步长为S, 填充为P的卷积运算后,得到的层的宽为W2,高为H2, 深度为D2,计算如下所示。

参数量大小

  • (FxFxD1)xK + K
  • 即(卷积核宽x卷积核高)x卷积核的个数 + 偏差个数(即卷积核的个数,每一层有一个bias)

Padding的大小

  • P = (F-S)/2
  • 即(卷积核的宽度-步长)的一半
相关推荐
©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页