本篇讲数据降维的另一种更普遍的算法——奇异值分解,主要内容包括数学原理,计算步骤,优缺点,应用场景、Python推荐示例等内容。
1、数学原理
奇异值分解(Singular Value Decomposition,SVD)是一种重要的矩阵分解。与之相对的是特征值分解(主成分分析主要使用方法),但特征值分解是针对的是方阵,但在实际应用场景中,我们经常遇到的矩阵都不是方阵,比如N个学生,每个学生的M科成绩,其中N≠M,这就组成N*M的非方阵矩阵。
对于一般普通的矩阵(包括方阵矩阵),如何来描述其重要特征?奇异值分解就是来做这些事情的。其中的矩阵分解公式为:
假设A是一个M* N的矩阵,那么通过矩阵分解将会得到U,Σ,V’(V的转置)三个矩阵,其中U是一个M * M的方阵,被称为左奇异向量,方阵里面的向量是正交的;Σ是一个M* N的对角矩阵,除了对角线的元素其他都是0,对角线上的值称为奇异值;V’(V的转置)是一个N * N的矩阵,被称为右奇异向量,方阵里面的向量也都是正交的。用图形展示如下图:
2、计算步骤
该矩阵是如何分解的?奇异值和特征值是如何计算的?
(1)将矩阵A的转置 * A,将会得到一个方阵,将方阵进行特征值分解:
其中得到的v,就是右奇异向量。
(2)通过方阵还可以求解σ和u:
σ是上文提到的奇异值,u是上文提到的左奇异向量。其中奇异值σ跟特征值很类似,在矩阵Σ中也是从大到小排列,而且σ的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。也就是说,我们也可以用前r大的奇异值来近似描述矩阵,其中r<<n,这里定义一下部分奇异值分解:
(3)选择适当的r,其中r是一个远小于m、n的数,这样可将原矩阵分解为:
其中,右边的三个矩阵相乘的结果将会是一个接近于A的矩阵,而r越接近n,其相乘结果越接近A。根据储存原理,储存量与矩阵面积正相关,因此面积越小占用的储存空间越小。而三个矩阵的面积之和要远小于原矩阵。因此如果要储存A的信息,只需要储存U、Σ、V就可以,因此信息得到压缩。
3、优缺点
奇异值分解的优点是:可以简化数据,压缩维度,去除数据噪音,提升算法的结果,加快模型计算性能,可以针对任一普通矩阵进行分解(包括样本数小于特征数),不受限于方阵。
奇异值分解的缺点是:转换后的数据比较难理解,如何与具体业务知识对应起来是难点。
4、应用场景
奇异值分解应用场景一:隐性语义索引(Latent Semantic Indexing,LSI)
矩阵是有文档(M行)和词语(N列)组成,通过奇异值分解,可以分析出那些文档或词语属于同一主题或概念,可应用于更高效的文档检索
奇异值分解应用场景二:推荐系统
通过奇异值分解,可以计算项与人之间的相似度,而进行协同过滤,向用户推荐相关产品。
5、数据背景
(1)样本数据
本次样本数据是11*11,其中行表示用户,列表示食品,中间数字表示该用户对食品的打分。如果数字为0,表示该用户没有吃过该食品。本次模型的目的就是向用户推荐未吃过的食品。
(2)推荐思路
首先,寻找用户未评价的食品,即用户-矩阵中的0值;
再次,对用户未打分的食品,通过相似度计算预计其可能会打多少分数;
最后,对这些打分的食品根据评分从高到低进行排序,返回前N个食品,这就是推荐结果。
(3)相似度计算
如何来衡量两个物品之间的相似情况,一般有以下三种方法
第一种是:欧氏距离
示例:
为将距离映射到【0,1】中,相似度=1/(1+欧氏距离)
第二种是:皮尔森相关系数
示例:
皮尔森系数在【-1,1】之间,为映射到【0,1】之间,相似度=0.5+0.5*corroef
第三种是:余弦夹角
余弦夹角在【-1,1】之间,为映射到【0,1】之间,相似度=0.5+0.5*cos
6、具体Python实现
- from numpy import *
- from numpy import linalg as la
- def eulidSim(inA,inB):
- return 1.0/(1.0+la.norm(inA,inB))
- def pearsSim(inA,inB):
- if len(inA<3):return 1.0
- return 0.5+0.5*corrcoef(inA,inB,rowvar=0)[0][1]
- def cosSim(inA,inB):
- num=float(inA.T*inB)
- denom=la.norm(inA)*la.norm(inB)
- return 0.5+0.5*(num/denom)
- from numpy import *
- from numpy import linalg as la
- def loadExData():
- return[[1, 1, 1, 0, 0],
- [2, 2, 2, 0, 0],
- [1, 1, 1, 0, 0],
- [5, 5, 5, 0, 0],
- [1, 1, 0, 2, 2],
- [0, 0, 0, 3, 3],
- [0, 0, 0, 1, 1]]
- def loadExData2():
- return[[0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5],
- [0, 0, 0, 3, 0, 4, 0, 0, 0, 0, 3],
- [0, 0, 0, 0, 4, 0, 0, 1, 0, 4, 0],
- [3, 3, 4, 0, 0, 0, 0, 2, 2, 0, 0],
- [5, 4, 5, 0, 0, 0, 0, 5, 5, 0, 0],
- [0, 0, 0, 0, 5, 0, 1, 0, 0, 5, 0],
- [4, 3, 4, 0, 0, 0, 0, 5, 5, 0, 1],
- [0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 4],
- [0, 0, 0, 2, 0, 2, 5, 0, 0, 1, 2],
- [0, 0, 0, 0, 5, 0, 0, 0, 0, 4, 0],
- [1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0]]
- def ecludSim(inA,inB):
- return 1.0/(1.0 + la.norm(inA - inB))
- def pearsSim(inA,inB):
- if len(inA) < 3 : return 1.0
- return 0.5+0.5*corrcoef(inA, inB, rowvar = 0)[0][1]
- def cosSim(inA,inB):
- num = float(inA.T*inB)
- denom = la.norm(inA)*la.norm(inB)
- return 0.5+0.5*(num/denom)
- #计算在给定相似度计算方法的条件下,用户对物品的估计评分值
- #standEst()函数中:参数dataMat表示数据矩阵,user表示用户编号,simMeas表示相似度计算方法,item表示物品编号
- def standEst(dataMat,user,simMeas,item):
- n=shape(dataMat)[1] #shape用于求矩阵的行列
- simTotal=0.0; ratSimTotal=0.0
- for j in range(n):
- userRating=dataMat[user,j]
- if userRating==0:continue #若某个物品评分值为0,表示用户未对物品评分,则跳过,继续遍历下一个物品
- #寻找两个用户都评分的物品
- overLap=nonzero(logical_and(dataMat[:,item].A>0,dataMat[:,j].A>0))[0]
- if len(overLap)==0:similarity=0
- else: similarity=simMeas(dataMat[overLap,item],dataMat[overLap,j])
- #print'the %d and%d similarity is: %f' %(item,j,similarity)
- simTotal+=similarity
- ratSimTotal+=similarity*userRating
- if simTotal==0: return 0
- else: return ratSimTotal/simTotal
- def recommend(dataMat,user,N=3,simMeas=cosSim,estMethod=standEst):
- #寻找未评级的物品
- unratedItems=nonzero(dataMat[user,:].A==0)[1]
- if len(unratedItems)==0: return 'you rated everything'
- itemScores=[]
- for item in unratedItems:
- estimatedScore=estMethod(dataMat,user,simMeas,item) #对每一个未评分物品,调用standEst()来产生该物品的预测得分
- itemScores.append((item,estimatedScore)) #该物品的编号和估计得分值放入一个元素列表itemScores中
- #对itemScores进行从大到小排序,返回前N个未评分物品
- return sorted(itemScores,key=lambda jj:jj[1],reverse=True)[:N]
- def svdEst(dataMat, user, simMeas, item):
- n = shape(dataMat)[1]
- simTotal = 0.0; ratSimTotal = 0.0
- U,Sigma,VT = la.svd(dataMat)
- Sig4 = mat(eye(4)*Sigma[:4]) #arrange Sig4 into a diagonal matrix
- xformedItems = dataMat.T * U[:,:4] * Sig4.I #create transformed items
- for j in range(n):
- userRating = dataMat[user,j]
- if userRating == 0 or j==item: continue
- similarity = simMeas(xformedItems[item,:].T,\
- xformedItems[j,:].T)
- print 'the %d and %d similarity is: %f' % (item, j, similarity)
- simTotal += similarity
- ratSimTotal += similarity * userRating
- if simTotal == 0: return 0
- else: return ratSimTotal/simTotal
其中dataMat[:,item].A,表示找出item列,因为是matrix,用.A转成array,logical_and,其实就是找出最item列和j列都>0,只有都大于0才会是true,nonzero会给出其中不为0的index。
进行SVD分解:
- >>>from numpy import linalg as la
- >>> U,Sigma,VT=la.svd(mat(svdRec.loadExData2()))
- >>> Sigma
- array([ 1.38487021e+01, 1.15944583e+01, 1.10219767e+01,
- 5.31737732e+00, 4.55477815e+00, 2.69935136e+00,
- 1.53799905e+00, 6.46087828e-01, 4.45444850e-01,
- 9.86019201e-02, 9.96558169e-17])
如何决定r?有个定量的方法是看多少个奇异值可以达到90%的能量,其实和PCA一样,由于奇异值其实是等于data×dataT特征值的平方根,所以总能量就是特征值的和
- >>> Sig2=Sigma**2
- >>> sum(Sig2)
- 541.99999999999932
而取到前4个时,发现总能量大于90%,因此r=4
- >>> sum(Sig2[:3])
- 500.50028912757909
SVD分解的关键在于,降低了user的维度,从n变到了4
- def svdEst(dataMat, user, simMeas, item):
- n = shape(dataMat)[1]
- simTotal = 0.0; ratSimTotal = 0.0
- U,Sigma,VT = la.svd(dataMat)
- Sig4 = mat(eye(4)*Sigma[:4]) #arrange Sig4 into a diagonal matrix
- xformedItems = dataMat.T * U[:,:4] * Sig4.I #create transformed items
- for j in range(n):
- userRating = dataMat[user,j]
- if userRating == 0 or j==item: continue
- similarity = simMeas(xformedItems[item,:].T,\
- xformedItems[j,:].T)
- print 'the %d and %d similarity is: %f' % (item, j, similarity)
- simTotal += similarity
- ratSimTotal += similarity * userRating
- if simTotal == 0: return 0
- else: return ratSimTotal/simTotal
将m×n的dataMat用特征值缩放转换为n×4的item和user类的矩阵
- >>> myMat=mat(svdRec.loadExData2())
- >>> myMat
- matrix([[0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5],
- [0, 0, 0, 3, 0, 4, 0, 0, 0, 0, 3],
- [0, 0, 0, 0, 4, 0, 0, 1, 0, 4, 0],
- [3, 3, 4, 0, 0, 0, 0, 2, 2, 0, 0],
- [5, 4, 5, 0, 0, 0, 0, 5, 5, 0, 0],
- [0, 0, 0, 0, 5, 0, 1, 0, 0, 5, 0],
- [4, 3, 4, 0, 0, 0, 0, 5, 5, 0, 1],
- [0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 4],
- [0, 0, 0, 2, 0, 2, 5, 0, 0, 1, 2],
- [0, 0, 0, 0, 5, 0, 0, 0, 0, 4, 0],
- [1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0]])
- >>> svdRec.recommend(myMat,1,estMethod=svdRec.svdEst)
- the 0 and 3 similarity is: 0.490950
- the 0 and 5 similarity is: 0.484274
- the 0 and 10 similarity is: 0.512755
- the 1 and 3 similarity is: 0.491294
- the 1 and 5 similarity is: 0.481516
- the 1 and 10 similarity is: 0.509709
- the 2 and 3 similarity is: 0.491573
- the 2 and 5 similarity is: 0.482346
- the 2 and 10 similarity is: 0.510584
- the 4 and 3 similarity is: 0.450495
- the 4 and 5 similarity is: 0.506795
- the 4 and 10 similarity is: 0.512896
- the 6 and 3 similarity is: 0.743699
- the 6 and 5 similarity is: 0.468366
- the 6 and 10 similarity is: 0.439465
- the 7 and 3 similarity is: 0.482175
- the 7 and 5 similarity is: 0.494716
- the 7 and 10 similarity is: 0.524970
- the 8 and 3 similarity is: 0.491307
- the 8 and 5 similarity is: 0.491228
- the 8 and 10 similarity is: 0.520290
- the 9 and 3 similarity is: 0.522379
- the 9 and 5 similarity is: 0.496130
- the 9 and 10 similarity is: 0.493617
- [(4, 3.3447149384692283), (7, 3.3294020724526967), (9, 3.328100876390069)]