sihai的博客

life is always beautiful like sunshine

蓝桥杯练习系统习题-算法训练6

文章推荐

蓝桥杯练习系统习题-算法训练6

题目搜索方式:Ctrl+F—-> 输入题目名称—>定位到解答.

入门训练(详见 算法-蓝桥杯习题(1-1))

基础练习(详见 算法-蓝桥杯习题(2-1))

基础练习(详见 算法-蓝桥杯习题(2-2))

算法训练(详见 算法-蓝桥杯习题(3-1))

算法训练(详见 算法-蓝桥杯习题(3-2))

算法训练(详见 算法-蓝桥杯习题(3-3))

算法训练(详见 算法-蓝桥杯习题(3-4))

算法训练(详见 算法-蓝桥杯习题(3-5))

算法训练(详见 算法-蓝桥杯习题(3-6))

算法提高(详见 算法-蓝桥杯习题(4-1))

算法提高(详见 算法-蓝桥杯习题(4-2))

历届试题(详见 算法-蓝桥杯习题(5-1))

历届试题(详见 算法-蓝桥杯习题(5-2))


算法训练 数对

问题描述
  编写一个程序,该程序从用户读入一个整数,然后列出所有的数对,每个数对的乘积即为该数。
  输入格式:输入只有一行,即一个整数。
  输出格式:输出有若干行,每一行是一个乘法式子。(注意:运算符号与数字之间有一个空格)
  输入输出样例
样例输入
32
样例输出
1 * 32 = 32
2 * 16 = 32
4 * 8 = 32
8 * 4 = 32
16 * 2 = 32
32 * 1 = 32

 #include <stdio.h>  
 void getResult(int num)  
 {  
     int i;  
     for(i=1;i<=num;i++)  
     {  
         if(num%i==0)  
         {  
             printf("%d * %d = %d\n",i,num/i,num);  
         }  
     }  
     return ;  
 }  
 main()  
 {  
     int num;  
     scanf("%d",&num);  
     getResult(num);  
     return 0;  
 }  

算法训练 完数

问题描述
  一个数如果恰好等于它的因子之和,这个数就称为“完数”。例如,6的因子为1、2、3,而6=1+2+3,因此6就是“完数”。又如,28的因子为1、2、4、7、14,而28=1+2+4+7+14,因此28也是“完数”。编写一个程序,判断用户输入的一个数是否为“完数”。
  输入格式:输入只有一行,即一个整数。
  输出格式:输出只有一行,如果该数为完数,输出yes,否则输出no。
  输入输出样例
样例输入
6
样例输出
yes

 #include <stdio.h>  
 void getResult(int num)  
 {  
     int i,sum=0;  
     for(i=1;i<num;i++)  
     {  
         if(num%i==0)  
         {  
             sum+=i;  
         }  
     }  
     if(sum==num)  
     {  
         printf("yes\n");  
     }  
     else  
     {  
         printf("no\n");  
     }  
 }  
 main()  
 {  
     int num;  
     scanf("%d",&num);  
     getResult(num);  
     return 0;  
 }  

算法训练 阿尔法乘积

问题描述
  计算一个整数的阿尔法乘积。对于一个整数x来说,它的阿尔法乘积是这样来计算的:如果x是一个个位数,那么它的阿尔法乘积就是它本身;否则的话,x的阿尔法乘积就等于它的各位非0的数字相乘所得到的那个整数的阿尔法乘积。例如:4018224312的阿尔法乘积等于8,它是按照以下的步骤来计算的:
  4018224312 → 418224312 → 3072 → 372 → 42 → 4*2 → 8
  编写一个程序,输入一个正整数(该整数不会超过6,000,000),输出它的阿尔法乘积。
  输入格式:输入只有一行,即一个正整数。
  输出格式:输出相应的阿尔法乘积。
  输入输出样例
样例输入
4018224312
样例输出
8

 #include <stdio.h>  
 void getResult(long long int num)  
 {  
     long long  int n=1;  
     int i;  
     //出口设计  
     if(num<10)  
     {  
         printf("%I64d\n",num);  
         return ;  
     }  
     //相似设计  
     do  
     {  
         i=num%10;  
         num/=10;  
         if(i)  
         {  
             n*=i;  
         }  
     }  
     while(num);  
     //递归调用   
     getResult(n);  
 }  
 main()  
 {  
     long long int num;  
     scanf("%I64d",&num);  
     getResult(num);  
     return 0;   
 }  

算法训练 黑色星期五

问题描述
  有些西方人比较迷信,如果某个月的13号正好是星期五,他们就会觉得不太吉利,用古人的说法,就是“诸事不宜”。请你编写一个程序,统计出在某个特定的年份中,出现了多少次既是13号又是星期五的情形,以帮助你的迷信朋友解决难题。
  说明:(1)一年有365天,闰年有366天,所谓闰年,即能被4整除且不能被100整除的年份,或是既能被100整除也能被400整除的年份;(2)已知1998年1月1日是星期四,用户输入的年份肯定大于或等于1998年。
  输入格式:输入只有一行,即某个特定的年份(大于或等于1998年)。
  输出格式:输出只有一行,即在这一年中,出现了多少次既是13号又是星期五的情形。
  输入输出样例
样例输入
1998
样例输出
3

 #include <stdio.h>  
 int getWeekOfFirstDay(int year)  
 {  
     //已知199811日是星期四  
     int i=1998,week=3;  
     int days=0;  
     for(i=1998;i<year;i++)  
     {  
         if(i%400==0||(i%4==0&&i%100!=0))  
         days+=366;  
         else  
         days+=365;  
     }  
     return (days+week)%7;  
 }  
 void printBlackFridayTimes(int year)  
 {  
     int day[2][12]={{31,28,31,30,31,30,31,31,30,31,30},{31,29,31,30,31,30,31,31,30,31,30}};  
     int week=getWeekOfFirstDay(year),flag=year%400==0||(year%4==0&&year%100!=0)?1:0;  
     int times=0,i,days=0;  
     //遍历12个月   
     for(i=0;i<12;i++)  
     {  
         //判断每个月13号是否是黑色星期五   
         if((days+12+week)%7==4)  
         times++;  
         days+=day[flag][i];   
     }  
     printf("%d\n",times);  
     return ;  
 }   
 main()  
 {  
     int year;  
     scanf("%d",&year);  
     printBlackFridayTimes(year);  
     return 0;  
 }  

算法训练 6-3判定字符位置

返回给定字符串s中元音字母的首次出现位置。英语元音字母只有‘a’、‘e’、‘i’、‘o’、‘u’五个。
  若字符串中没有元音字母,则返回0。
  只考虑小写的情况。
样例输入
and
样例输出
1

 #include <stdio.h>  
 #include <string.h>  
 #define MaxSize 1000  
 main()  
 {  
     char str[MaxSize];  
     int lenth,i;  
     gets(str);  
     lenth=strlen(str);  
     for(i=0;i<lenth;i++)  
     {  
         if(str[i]=='a'||str[i]=='e'||str[i]=='i'||str[i]=='o'||str[i]=='u')  
         {  
             printf("%d\n",i+1);  
             return 0;  
         }  
     }  
     printf("0\n");  
     return 0;  
 }  

算法训练 9-7链表数据求和操作

  读入10个复数,建立对应链表,然后求所有复数的和。
样例输入
1 2
1 3
4 5
2 3
3 1
2 1
4 2
2 2
3 3
1 1
样例输出
23+23i

 #include <stdio.h>  
 main()  
 {  
     int i,j,k,time=10,m=0,n=0;  
     for(k=0;k<time;k++)  
     {  
         scanf("%d%d",&i,&j);  
         m+=i;  
         n+=j;  
     }  
     printf("%d+%di\n",m,n);  
     return 0;  
 }  
 #include <stdio.h> 
 #include <malloc.h> 
 typedef struct linknode 
 { 
     int x; 
     int y; 
     struct linknode *next; 
 }node; 
 int main() 
 { 
 node *begin=(node *)malloc(sizeof(node)); 
 node *q=begin,*p; 
 int m=0,n=0; 
 scanf("%d%d",&q->x,&q->y); 
 int i; 
 for(i=1;i<10;i++) 
 { 
     p=(node *)malloc(sizeof(node)); 
     scanf("%d%d",&p->x,&p->y); 
     q->next=p; 
     q=p; 
 } 
 p->next=NULL; 
 while(begin!=NULL) 
 { 
    m+=begin->x;     
    n+=begin->y; 
    begin=begin->next;     
 } 
 printf("%d+%di",m,n); 
     return 0; 
 } 

算法训练 最大体积

问题描述
  每个物品有一定的体积(废话),不同的物品组合,装入背包会战用一定的总体积。假如每个物品有无限件可用,那么有些体积是永远也装不出来的。为了尽量装满背包,附中的OIER想要研究一下物品不能装出的最大体积。题目保证有解,如果是有限解,保证不超过2,000,000,000
  如果是无限解,则输出0
输入格式
  第一行一个整数n(n<=10),表示物品的件数
  第2行到N+1行: 每件物品的体积(1<= <=500)
输出格式
  一个整数ans,表示不能用这些物品得到的最大体积。
样例输入
3
3
6
10
样例输出
17

 #include <stdio.h>  
 int n;  
 int a[510];  
 int f[100001];  
 void swap(int *a,int *b)  
 {  
    int c;  
    c=*a;  
    *a=*b;  
    *b=c;  
 }  
 int gcd(int a,int b)  
 {  
     if(a>b)  
       swap(&a,&b);  
     if(a==0)  
       return b;  
     return gcd(b%a,a);  
 }  
 int main()  
 {  
     int i,j,t;  
     scanf("%d",&n);  
     for(i=1;i<=n;i++)  
         scanf("%d",&a[i]);  
     t=a[1];  
     for(i=2;i<=n;i++)  
         t=gcd(t,a[i]);  
     if(t!=1)  
     {  
         printf("0\n");  
         return 0;  
     }  
     else  
     {  
           f[0]=1;  
           for(i=1;i<=n;i++)  
           {  
               for(j=a[i];j<=65536;j++)  
                   f[j] |= f[j-a[i]];  
           }  
           for(i=65536;i>=0;i--)  
           {  
               if(!f[i])  
               {  
                   printf("%d\n",i);  
                   return 0;  
               }  
           }  
           printf("0\n");  
           return 0;  
     }  
 }  

算法训练 貌似化学

问题描述
  现在有a,b,c三种原料,如果他们按x:y:z混合,就能产生一种神奇的物品d。
  当然不一定只产生一份d,但a,b,c的最简比一定是x:y:z
  现在给你3种可供选择的物品:
  每个物品都是由a,b,c以一定比例组合成的,求出最少的物品数,使得他们能凑出整数个d物品(这里的最少是指三者个数的总和最少)
输入格式
  第一行三个整数,表示d的配比(x,y,z)
  接下来三行,表示三种物品的配比,每行三个整数(<=10000)。
输出格式
  四个整数,分别表示在最少物品总数的前提下a,b,c,d的个数(d是由a,b,c配得的)
  目标答案<=10000
  如果不存在满足条件的方案,输出NONE
样例输入
3 4 5
1 2 3
3 7 1
2 1 2
样例输出
8 1 5 7

算法训练 貌似化学

问题描述
  现在有a,b,c三种原料,如果他们按x:y:z混合,就能产生一种神奇的物品d


  当然不一定只产生一份d,但a,b,c的最简比一定是x:y:z
  现在给你3种可供选择的物品:
  每个物品都是由a,b,c以一定比例组合成的,求出最少的物品数,使得他们

能凑出整数个d物品(这里的最少是指三者个数的总和最少)
输入格式
  第一行三个整数,表示d的配比(x,y,z)
  接下来三行,表示三种物品的配比,每行三个整数(<=10000)。
输出格式
  四个整数,分别表示在最少物品总数的前提下a,b,c,d的个数(d是由a,b,c

配得的)
  目标答案<=10000
  如果不存在满足条件的方案,输出NONE
样例输入
3 4 5
1 2 3
3 7 1
2 1 2
样例输出
8 1 5 7

#include <cstdio>  
 #include <cstring>  
 #define INF 214748326  
 double a[10][10];  
 double b[10][10];  
 double c[10];  
 int min=INF;  
 int ansx,ansy,ansz,ansk;  
 int trunc(double x){  
     if ((int)(x+0.5)>(int)x) return (int)x+1;  
     return (int)x;  
 }  
 int main(){  
     scanf("%lf%lf%lf",&a[1][4],&a[2][4],&a[3][4]);  
     scanf("%lf%lf%lf%lf%lf%lf%lf%lf%lf",&a[1][1],&a[2][1],&a[3][1],&a  
 [1][2],&a[2][2],&a[3][2],&a[1][3],&a[2][3],&a[3][3]);  
     memcpy(b,a,sizeof(a));  
     for (int k=1;k<=10000;k++){  
         for (int i=1;i<=3;i++) a[i][4]*=k;  
         for (int i=1;i<3;i++){  
             for (int j=i+1;j<=3;j++){  
                 double t=1;  
                 if (a[j][i]!=0) t=a[i][i]/a[j][i];  
                 a[j][i]=0;  
                 for (int k=i+1;k<=4;k++){  
                     a[j][k]=t*a[j][k]-a[i][k];  
                 }  
             }  
         }  
         memset(c,0,sizeof(c));  
         c[3]=a[3][4]/a[3][3];  
         for (int i=2;i>0;i--){  
             double tot=0;  
             for (int j=i+1;j<=3;j++){  
                 tot+=a[i][j]*c[j];  
             }  
             c[i]=(a[i][4]-tot)/a[i][i];  
         }  
         int x=trunc(c[1]);  
         int y=trunc(c[2]);  
         int z=trunc(c[3]);  
         if (b[1][1]*x+b[1][2]*y+b[1][3]*z==b[1][4]*k  
          && b[2][1]*x+b[2][2]*y+b[2][3]*z==b[2][4]*k  
          && b[3][1]*x+b[3][2]*y+b[3][3]*z==b[3][4]*k){  
                                                       if (min>x+y+z){  
 ansx=x;  
 ansy=y;  
 ansz=z;  
 ansk=k;  
 min=z+y+z;  
                                                       }  
          }  
          memcpy(a,b,sizeof(a));  
     }  
     if (ansx==0 && ansy==0 && ansz==0) printf("NONE");else  
     printf("%d %d %d %d\n",ansx,ansy,ansz,ansk);  
     return 0;  
 }  

算法训练 字符串的展开

  在初赛普及组的“阅读程序写结果”的问题中,我们曾给出一个字符串展开的例子:如果在输入的字符串中,含有类似于“d-h”或者“4-8”的字串,我们就把它当作一种简写,输出时,用连续递增的字母获数字串替代其中的减号,即,将上面两个子串分别输出为“defgh”和“45678”。在本题中,我们通过增加一些参数的设置,使字符串的展开更为灵活。具体约定如下:
  (1) 遇到下面的情况需要做字符串的展开:在输入的字符串中,出现了减号“-”,减号两侧同为小写字母或同为数字,且按照ASCII码的顺序,减号右边的字符严格大于左边的字符。
  (2) 参数p1:展开方式。p1=1时,对于字母子串,填充小写字母;p1=2时,对于字母子串,填充大写字母。这两种情况下数字子串的填充方式相同。p1=3时,不论是字母子串还是数字字串,都用与要填充的字母个数相同的星号“”来填充。   (3) 参数p2:填充字符的重复个数。p2=k表示同一个字符要连续填充k个。例如,当p2=3时,子串“d-h”应扩展为“deeefffgggh”。减号两边的字符不变。   (4) 参数p3:是否改为逆序:p3=1表示维持原来顺序,p3=2表示采用逆序输出,注意这时候仍然不包括减号两端的字符。例如当p1=1、p2=2、p3=2时,子串“d-h”应扩展为“dggffeeh”。   (5) 如果减号右边的字符恰好是左边字符的后继,只删除中间的减号,例如:“d-e”应输出为“de”,“3-4”应输出为“34”。如果减号右边的字符按照ASCII码的顺序小于或等于左边字符,输出时,要保留中间的减号,例如:“d-d”应输出为“d-d”,“3-1”应输出为“3-1”。 输入格式   输入包括两行:   第1行为用空格隔开的3个正整数,一次表示参数p1,p2,p3。   第2行为一行字符串,仅由数字、小写字母和减号“-”组成。行首和行末均无空格。 输出格式   输出只有一行,为展开后的字符串。 输入输出样例1 输入格式 输出格式 1 2 1 abcs-w1234-9s-4zz abcsttuuvvw1234556677889s-4zz 输入输出样例2 输入格式 输出格式 2 3 2 a-d-d aCCCBBBd-d 输入输出样例3 输入格式 输出格式 3 4 2 di-jkstra2-6 dijkstra2*6
数据规模和约定
  40%的数据满足:字符串长度不超过5
  100%的数据满足:1<=p1<=3,1<=p2<=8,1<=p3<=2。字符串长度不超过100

 #include<stdio.h>  
  #include<stdlib.h>  
  #include<string.h>  
  void fill(char a)  
  {  
  }  
  int main()  
  {  
      char s[120]={0};  
      memset(s,0,sizeof(s));  
      int p1,p2,p3,i,j,k;  
      scanf("%d%d%d",&p1,&p2,&p3);  
      scanf("%s",s);  
      for(i=0;i<strlen(s);i++)  
      {  
          if(s[i]=='-')  
          {  
              if(s[i-1]>='a' && s[i-1]<='z' && s[i+1]>='a' && s[i+1]<='z' && s[i+1]>s[i-1]  
              || s[i-1]>='0' && s[i-1]<='9' && s[i+1]>='0' && s[i+1]<='9' && s[i+1]>s[i-1])  
              {  
                  if(p1==3)  
                  {  
                      for(j=1;j<=p2*(s[i+1]-s[i-1]-1);j++)  
                      {  
                          printf("*");  
                      }  
                  }  
                  else  
                  {  
                      if(s[i-1]>='0' && s[i-1]<='9' && s[i+1]>='0' && s[i+1]<='9')  
                      {  
                          if(p3==1)  
                          {  
                              for(j=s[i-1]+1;j<=s[i+1]-1;j++)  
                              {  
                                  for(k=1;k<=p2;k++)  
                                  {  
                                      printf("%c",j);  
                                  }  
                              }  
                          }  
                          else  
                          {  
                              for(j=s[i+1]-1;j>=s[i-1]+1;j--)  
                              {  
                                  for(k=1;k<=p2;k++)  
                                  {  
                                      printf("%c",j);  
                                  }  
                              }  
                          }  
                      }  
                      else  
                      {  
                          if(p3==1)  
                          {  
                              for(j=s[i-1]+1;j<=s[i+1]-1;j++)  
                              {  
                                  for(k=1;k<=p2;k++)  
                                  {  
                                      printf("%c",p1==1?j:j-32);  
                                  }  
                              }  
                          }  
                          else  
                          {  
                              for(j=s[i+1]-1;j>=s[i-1]+1;j--)  
                              {  
                                  for(k=1;k<=p2;k++)  
                                  {  
                                      printf("%c",p1==1?j:j-32);  
                                  }  
                              }  
                          }  
                      }  
                  }  
              }  
              else  
              {  
                  printf("%c",s[i]);  
              }  
          }  
          else  
          {  
              printf("%c",s[i]);  
          }  
      }  
      return 0;  
  }  

算法训练 明明的随机数

问题描述
  明明想在学校中请一些同学一起做一项问卷调查,为了实验的客观性,他先用计算机生成了N个1到1000之间的随机整数(N≤100),对于其中重复的数字,只保留一个,把其余相同的数去掉,不同的数对应着不同的学生的学号。然后再把这些数从小到大排序,按照排好的顺序去找同学做调查。请你协助明明完成“去重”与“排序”的工作。
输入格式
  输入有2行,第1行为1个正整数,表示所生成的随机数的个数:
  N
  第2行有N个用空格隔开的正整数,为所产生的随机数。
输出格式
  输出也是2行,第1行为1个正整数M,表示不相同的随机数的个数。第2行为M个用空格隔开的正整数,为从小到大排好序的不相同的随机数。
样例输入
10
20 40 32 67 40 20 89 300 400 15
样例输出
8
15 20 32 40 67 89 300 400

 #include <stdio.h>  
 #define MaxSize 100+5  
 void printArray(int array[],int lenth)  
 {  
     int i;  
     printf("%d\n",lenth);  
     for(i=0;i<lenth;i++)  
     {  
         printf("%d ",array[i]);  
     }  
     printf("\n");  
     return ;  
 }   
 void sortArray(int array[],int lenth)  
 {  
     int i,j;  
     for(i=0;i<lenth;i++)  
     {  
         for(j=lenth-1;j>i;j--)  
         {  
             if(array[j]<array[j-1])  
             {  
                 int temp;  
                 temp=array[j];  
                 array[j]=array[j-1];  
                 array[j-1]=temp;  
             }  
         }  
     }  
     return ;  
 }   
 main()  
 {  
     int N,m,i,j;  
     int array[MaxSize];  
     scanf("%d",&N);  
     m=N;  
     for(i=0;i<m;i++)  
     {  
         scanf("%d",&array[i]);  
         for(j=0;j<i;j++)  
         {  
             if(array[i]==array[j])  
             {  
                 i--;  
                 m--;  
                 continue;  
             }  
         }  
     }  
     sortArray(array,m);  
     printArray(array,m);  
     return 0;  
 }  


阅读更多
版权声明:本文为本人辛苦原创文章,如果需要转载,请注明出处,谢谢!!! https://blog.csdn.net/sihai12345/article/details/79252140
所属专栏: 蓝桥杯竞赛训练习题
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭