Math | Fourier Series & Fourier Transform

Basic knowledge

1.1 How to describe a wave

  • [picture from Baidu]在这里插入图片描述
  • [formula] x = A s i n ( ω t + φ ) x = Asin( ωt + φ ) x=Asin(ωt+φ
    • A means amplitude.
    • ω represents angular frequency, which means phase angle radian (相角弧度值) changing per unit time. ω = 2 π f = 2 π T \omega = 2 \pi f = {2\pi \above{1pt} T} ω=2πf=T2π
    • φ means primary phase, while ω t + φ ωt + φ ωt+φ means phase.

1.2 Standard orthonormal basis

  • The standard orthogonal basis can represent any vector in the vector space.

1.3 Hilbert space

  • Hilbert space extends Euclid space, and the base (基底) of Hilbert space is usually function. For example, arbitrary function in Hilbert space can decomposed into sine and cosine function thought Fourier Series, where sine and cosine are orthonormal basis.

1.4 Dirichlet’s convergence theorem

Let f ( x ) f(x) f(x) takes 2 l 2l 2l as a period, if f ( x ) f(x) f(x) on [ − l , l ] [-l, l] [l,l] satisfies that:

  • ①. f ( x ) f(x) f(x) continuous or only finite first class discontinuities (第一类间断点:可去、跳跃)
  • ②. only finite extreme point (极值点)

we can say that the Fourier Series of f ( x ) f(x) f(x) converge in [ − l , l ] [-l, l] [l,l].

1.5 Euler’s formula

e i x = c o s x + i ∗ s i n x e^{ix} = cosx + i*sinx eix=cosx+isinx

Fourier Series

1.1 Formula

f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n ∗ c o s ( n π x l ) + b n ∗ s i n ( n π x l ) ) f(x) = {a_0 \above{1pt} 2} + \displaystyle\sum_{n=1}^\infin (a_n*cos({n\pi x \above{1pt} l}) + b_n * sin({n\pi x \above{1pt} l})) f(x)=2a0+n=1(ancos(lnπx)+bnsin(lnπx))
where
a 0 = 1 l ∫ − l l f ( x ) d x a_0 = {1 \above{1pt} l} \int_{-l}^l f(x)dx a0=l1llf(x)dx
a n = 1 l ∫ − l l f ( x ) ∗ c o s ( n π x l ) d x a_n = {1 \above{1pt} l} \int_{-l}^l f(x)*cos({n\pi x \above{1pt} l})dx an=l1llf(x)cos(lnπx)dx
b n = 1 l ∫ − l l f ( x ) ∗ s i n ( n π x l ) d x b_n = {1 \above{1pt} l} \int_{-l}^l f(x)*sin({n\pi x \above{1pt} l})dx bn=l1llf(x)sin(lnπx)dx

1.2 Compact formula

f ( x ) = ∑ k = − ∞ ∞ c k ∗ e i k x f(x) = \displaystyle\sum_{k=-\infin}^\infin c_k * e^{ikx} f(x)=k=ckeikx
where c k c_k ck represents the projection of f ( x ) f(x) f(x) in e i k x e^{ikx} eikx direction can be written as < f ( x ) , e i k x > <f(x), e^{ikx}> <f(x),eikx>. Actually, c k c_k ck can be considered as coefficient.

Fourier Transform

1.1 Formula

  • forward (time domain to frequency domain)
    F ( ξ ) = ∫ − ∞ ∞ f ( t ) ∗ e − i ω t d t F(\xi) = \int_{-\infin}^\infin f(t)*e^{-i\omega t} dt F(ξ)=f(t)eiωtdt
    where ξ \xi ξ means frequency.
  • inverse (frequency domain to time domain)
    f ( t ) = ∫ − ∞ ∞ F ( ξ ) ∗ e i ω t d ξ f(t) = \int_{-\infin}^\infin F(\xi)*e^{i\omega t} d\xi f(t)=F(ξ)eiωtdξ

Diff between Fourier Series & Fourier Transform

  • Fourier Series is about period function, while Fourier Transform extend l l l to infinity.

Discrete Fourier Transform (DFT)

1.1 Tips

  • DFT approximating that Fourier series approximation on a finite interval where your function is periodic.

1.2 Transform Formula

f k ^ = ∑ j = 0 n − 1 f j ∗ e − i 2 π j k n \hat{f_k} = \sum_{j=0}^{n-1} f_j * e^{-i2\pi jk \above{1pt} n} fk^=j=0n1fjeni2πjk
f k = 1 n ∑ j = 0 n − 1 f j ^ ∗ e i 2 π j k n {f_k} = {1 \above{1pt} n} \sum_{j=0}^{n-1} \hat{f_j} * e^{i2\pi jk \above{1pt} n} fk=n1j=0n1fj^eni2πjk

let ω = e − i 2 π n \omega = e^{-i2\pi \above{1pt} n} ω=eni2π

[ f 0 ^ f 1 ^ f 2 ^ . . . f n ^ ] = [ 1 1 1 . . . 1 1 ω ω 2 . . . ω n − 1 1 ω 2 ω 4 . . . ω 2 ( n − 1 ) 1 . . . . . . . . . . . . 1 ω n − 1 ω 2 ( n − 1 ) . . . ω ( n − 1 ) ( n − 1 ) ] [ f 0 f 1 f 2 . . . f n ] \begin{bmatrix} \hat{f_0} \\ \hat{f_1} \\ \hat{f_2} \\ ...\\ \hat{f_n} \\ \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & ... & 1\\ 1 & \omega & \omega^2 & ... & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & ... & \omega^{2(n-1)} \\ 1 & ... & ... & ... & ...\\ 1 & \omega^{n-1} & \omega^{2(n-1)} & ... & \omega^{(n-1)(n-1)}\\ \end{bmatrix} \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ ...\\ f_n \\ \end{bmatrix} f0^f1^f2^...fn^=111111ωω2...ωn11ω2ω4...ω2(n1)...............1ωn1ω2(n1)...ω(n1)(n1)f0f1f2...fn

Fast Fourier Transform (FFT)

  • Efficient measure to compute the matrix of DFT.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值