np.linalg.norm()用法总结

前言

np.linalg.norm()用于求范数,linalg本意为linear(线性) + algebra(代数),norm则表示范数。

用法

np.linalg.norm(x, ord=None, axis=None, keepdims=False)

1.x: 表示矩阵(一维数据也是可以的~)
2.ord: 表示范数类型
向量的范数
在这里插入图片描述
矩阵的向量
ord=1:表示求列和的最大值
ord=2:|λE-ATA|=0,求特征值,然后求最大特征值得算术平方根
ord=∞:表示求行和的最大值
ord=None:表示求整体的矩阵元素平方和,再开根号
3.axis:

参数含义
0表示按列向量来进行处理,求多个列向量的范数
1表示按行向量来进行处理,求多个行向量的范数
None表示整个矩阵的范数

4.keepdims:表示是否保持矩阵的二位特性,True表示保持,False表示不保持,默认为False

例子

1.默认状态下

import numpy as np
X = [[1, 2, 3], [4, 5, 6]]
print(np.linalg.norm(X))

Result:
在这里插入图片描述

在这里插入图片描述
2.改变axis

import numpy as np
X = [[1, 2, 3], [4, 5, 6]]
print(np.linalg.norm(X, axis=1))
import numpy as np
X = [[1, 2, 3], [4, 5, 6]]
print(np.linalg.norm(X, axis=0))

在这里插入图片描述
3.改变ord

import numpy as np
X = [[1, 2, 3], [4, 5, 6]]
print(np.linalg.norm(X, ord=1))
import numpy as np
X = [[1, 2, 3], [4, 5, 6]]
print(np.linalg.norm(X, ord=2))

在这里插入图片描述
4.改变keepdims

import numpy as np
X = [[1, 2, 3], [4, 5, 6]]
print(np.linalg.norm(X, axis=0, keepdims=True))
import numpy as np
X = [[1, 2, 3], [4, 5, 6]]
print(np.linalg.norm(X, axis=0))

在这里插入图片描述


希望这篇文章对大家的学习有所帮助!

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小k同学!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值