Liu-Cheng Xu

温故知新

排序:
默认
按更新时间
按访问量

书单分享

了解一个新的领域,其中一个方法就是大量的阅读,进而产生一个基本的认识。之前研究过推荐系统,机器学习,一路走来也积累了一些书单,丢失了一些,如今还剩这些。在此分享给大家,里面有不少有关机器学习和数据挖掘,还有 Python,Spark,设计类等等。Theory 部分大部分是经典书籍,对于发论文可能显...

2017-12-07 19:32:48

阅读数:215

评论数:0

详解 MNIST 数据集

MNIST 数据集已经是一个被”嚼烂”了的数据集, 很多教程都会对它”下手”, 几乎成为一个 “典范”. 不过有些人可能对它还不是很了解, 下面来介绍一下.MNIST 数据集可在 http://yann.lecun.com/exdb/mnist/ 获取, 它包含了四个部分: Training se...

2017-07-17 20:41:35

阅读数:64436

评论数:7

10 分钟理解 PyTorch 代码

本文译自: Understand PyTorch code in 10 minutesPyTorch 是一个新的深度学习框架. 本文的内容基于 Justin Johnson 的 教程, 如果想要有更多了解或有更多时间的话建议仔细研究一下.PyTorch 主要包含 4 个包 (package): t...

2017-07-01 15:25:12

阅读数:948

评论数:0

理解机器学习中的偏差与方差

学习算法的预测误差, 或者说泛化误差(generalization error)可以分解为三个部分: 偏差(bias), 方差(variance) 和噪声(noise). 在估计学习算法性能的过程中, 我们主要关注偏差与方差. 因为噪声属于不可约减的误差 (irreducible error).首...

2017-05-04 13:02:32

阅读数:8223

评论数:5

Python Machine Learning - 感知器算法

感知器 (perceptron) 算法的历史就不介绍了,大意就是想法来自生物学的神经元的一些工作方式,多个生物信号 (input singals) 到达树突 (dentrites)并进入细胞核 (cell nucleus),如果这些信号的效果累加达到一个阈值,那么通过轴突 (axon) 产生一个输...

2017-01-19 21:13:46

阅读数:3268

评论数:0

推荐系统常见评测标准之MAP与NDCG

MAPAP在了解MAP(Mean Average Precision)之前,先来看一下AP(Average Precision), 即为平均准确率。对于AP可以用这种方式理解: 假使当我们使用google搜索某个关键词,返回了10个结果。当然最好的情况是这10个结果都是我们想要的相关信息。但是假如...

2016-08-24 09:06:20

阅读数:2609

评论数:0

理解梯度下降

机器学习中常会用随机梯度下降法求解一个目标函数 L(Θ)L(\Theta) ,并且常是最小化的一个优化问题: min L(Θ)min \ L \left(\Theta\right) 我们所追求的是目标函数能够快速收敛或到达一个极小值点。而随机梯度法操作起来也很简单,不过是求偏导数而已,但是为什...

2016-05-05 13:30:18

阅读数:10066

评论数:3

推荐系统评测标准TOPN之precision与recall

1.关于推荐系统topN的评估指标:precision(精确率)和recall(召回率) 关于准确率应该比较容易理解。但是召回率可能有点绕。下面是我觉得比较容易理解的解释: 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量。其中精度是检索出相关文档数与检索出...

2015-06-17 21:51:30

阅读数:1801

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭