什么是机器学习?
从广义上来说,机器学习是一种能够赋予机器学习的能力以此让它完成直接编程无法完成的功能的方法。但从实践的意义上来说,机器学习是一种通过利用数据,训练出模型,然后使用模型预测的一种方法。
“训练”与“预测”是机器学习的两个过程,“模型”则是过程的中间输出结果,“训练”产生“模型”,“模型”指导 “预测”。
机器学习方法是计算机利用已有的数据(经验),得出了某种模型(迟到的规律),并利用此模型预测未来的一种方法。

机器学习的范围
机器学习跟模式识别,统计学习,数据挖掘,计算机视觉,语音识别,自然语言处理等领域有着很深的联系。从范围上来说,机器学习跟模式识别,统计学习,数据挖掘是类似的,同时,机器学习与其他领域的处理技术的结合,形成了计算机视觉、语音识别、自然语言处理等交叉学科。因此,一般说数据挖掘时,可以等同于说机器学习。同时,我们平常所说的机器学习应用,应该是通用的,不仅仅局限在结构化数据,还有图像,音频等应用。

本文探讨了机器学习的概念,其与数据挖掘、自然语言处理等领域的关联,以及机器学习工程师的角色和职责。机器学习工程师通过训练模型进行预测,涉及大数据处理、统计建模和算法开发。要成为机器学习工程师,需要掌握Python编程、高级数学知识以及数据分析和建模经验。
订阅专栏 解锁全文
2321

被折叠的 条评论
为什么被折叠?



