simsimiQAQ
码龄9年
关注
提问 私信
  • 博客:7,955
    7,955
    总访问量
  • 4
    原创
  • 736,053
    排名
  • 8
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2016-05-31
博客简介:

simsimiztz的博客

查看详细资料
个人成就
  • 获得13次点赞
  • 内容获得4次评论
  • 获得36次收藏
创作历程
  • 4篇
    2019年
成就勋章
兴趣领域 设置
  • 人工智能
    opencv计算机视觉深度学习神经网络pytorch
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

每日一篇小论文 ---- DNN Embeddings with Gating Mechanisms for Text-Independent Speaker Verification

@每日一篇小论文----arXiv:1903.12092v2DNN Embeddings with Gate Mechanism在本文中,门控机制应用于基于x-vector的文本独立说话人验证的深度神经网络(DNN)训练。 首先,采用门控卷积神经网络(GCNN)对帧级嵌入层进行建模。 与时延DNN(TDNN)相比,GCNN可以通过精心设计的存储单元和门控机制获得更具表现力的帧级表示。 此外,我...
原创
发布博客 2019.04.26 ·
441 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

每日一篇小论文 ---- Attentive Statistics Pooling for Deep Speaker Embedding

@每日一篇小论文----arXiv:1803.10963v2attentive statistic pooling本文提出了在与文本无关的说话人验证中深度说话人嵌入的细心统计汇总。 在传统的扬声器嵌入中,帧级特征在单个话语的所有帧上被平均以形成话语级特征。 我们的方法利用注意机制为不同的帧提供不同的权重,并且不仅生成加权平均值而且生成加权标准偏差。 通过这种方式,它可以更有效地捕捉扬声器特性的...
原创
发布博客 2019.04.25 ·
4850 阅读 ·
7 点赞 ·
4 评论 ·
24 收藏

每日一篇小论文 ---- TEXT-INDEPENDENT SPEAKER VERIFICATION USING 3D CONVOLUTIONAL NEURAL NETWORKS

@每日一篇小论文----arXiv:1705.09422v7三维卷积在本文中,已经提出了一种使用3D卷积神经网络(3D-CNN)架构的新方法,用于与文本无关的设置中的说话人验证。主要挑战之一是创建speaker model。大多数先前报道的方法基于对从扬声器的发声中提取的特征求平均来创建说话者模型,其被称为d-vector系统。在我们的论文中,我们提出了一种自适应特征学习,它利用3D-CNN进...
原创
发布博客 2019.04.24 ·
1077 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

每日一篇小论文 ---- Weight Normalization

@每日一篇小论文----arXiv:1602.07868v3Weight Normalization我们提出权重归一化:神经网络中权重向量的重新参数化,将那些权重向量的长度与它们的方向分离。通过以这种方式重新参数化,我们改进了优化问题的条件,并加快了随机梯度下降的收敛速度。我们的重新参数化受到批量标准化的启发,但不会在批处理中的示例之间引入任何依赖关系。这意味着我们的方法也可以成功地应用于诸如...
原创
发布博客 2019.04.23 ·
1587 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏