目录
一.最小生成树的定义
最小生成树(Minimum Spanning Tree,简称MST)是图论中的一个概念。给定一个连通的无向图,最小生成树是指包含图中所有顶点的一棵树,且该树的所有边的权重之和最小。
最小生成树的基本定义和性质:
- 连通性:最小生成树必须包含图中的所有顶点,并且通过边将它们连接起来,确保整个图是连通的,即任意两个顶点之间都有路径。(一颗有 n 个顶点的生成树有且仅有 n−1 条边,如果生成树中再添加一条边,则必定成环。)
- 无环:最小生成树是一棵树,所以不能包含任何环(即回路)。
- 最小权重:最小生成树的边权重之和应当尽可能地小。在有多个满足条件的最小生成树时,它们的权重之和是相同的。
二.普里姆(prim)算法
一.定义
普里姆算法是一种构造性算法。假设G = (V, E)是一个具有n个顶点的带权连通图,T = (U,TE)是最小生成树,其中U是T的顶点集,TE是T的边集,则由G构造从起始点v出法的最小生成树T的步骤如下:
- 初始化U = { v },以v到其他顶点的所有边为侯选边。
- 重复以下步骤(n - 1)次,使得其他(n - 1)个顶点被加入U中。
二.算法实现步骤
- 选择一个起始节点作为最小生成树的起点。
- 将该起始节点加入最小生成树集合,并将其标记为已访问。
- 在所有与最小生成树集合相邻的边中,选择权重最小的边和它连接的未访问节点。
- 将该边和节点加入最小生成树集合,并将该节点标记为已访问。
- 重复步骤3和步骤4,直到最小生成树集合包含了图中的所有节点。
下面我们将按步骤实现此算法,现给出一个无向完全图,求出其最小生成树。
( 以下图片中亮的点表示为已访问,暗的点为未访问)
1.首先我们选择一起始节点作为最小生成树的起点(这里取V1点作为起点),我们将V1点加入最小生成树集合中,标记为已访问。
2. 在所有与最小生成树集合相邻的边中,选择权重最小的边和它连接的未访问节点,将V3点加入到最小生成树集合中,将V3点标记为未访问。
3.在所有与最小生成树集合相邻的边中,选择权重最小的边和它连接的未访问节点,(注意这里是与最小生成树的集合相邻的边中找,而不仅仅是V1或者V3的邻边)将V4点加入到最小生成树集合中,将V4点标记为未访问。
4.重复步骤3,将点V4点加入到最小生成树集合中,将V4点标记为未访问。
5.重复以上操作,最后得到该图的最小生成树(其一)。
我们求出的最小生成树可能不是唯一的,需要注意,比如该图的最小生成树就不是唯一的,有两个。
通过以上的步骤,我们可以大致理解其prim算法的实现原理,接下来我们通过代码实现prim算法求最小生成树。
三.prim算法朴素
#include<bits/stdc++.h>
using namespace std;
const int N = 10005, inf = 0x3f3f3f; //inf代表无穷大
int dis[N], e[N][N]; //dis数组用来存储边,e数组表示邻接矩阵
bool vis[N]; //标记数组
int n, m, ans;
void prim() //prim算法核心代码段
{
ans = 0;
memset(dis, 0x3f, sizeof(dis)); //初始化边为无穷大
dis[1] = 0; //选1为起始节点
for (int i = 1; i <= n; i++) {
int t = -1;
int temp = inf;
for (int j = 1; j <= n; j++) { //找邻边最小边
if (!vis[j] && dis[j] < temp) {
temp = dis[j];
t = j;
}
}
if (t == -1) //图不联通
{
ans = inf;
return;
}
vis[t] = true; //将该点标记为已访问
ans += dis[t];
for (int k = 1; k <= n; k++) { //松弛
dis[k] = min(dis[k], e[t][k]);
}
}
}
int main()
{
cin >> n >> m;
memset(e, inf, sizeof(e)); //将邻接矩阵初始化为无穷大
for (int i = 1; i <= m; i++)
{
int a, b, c;
cin >> a >> b >> c;
e[a][b] = e[b][a] = c; //无向图,对称 (这里可以加一个取最小边的判断)
}
prim();
if (ans == inf) //该图不联通
cout << "orz" << endl;
else //输出最小生成树各边长度之和
cout << ans << endl;
return 0;
}
以上是prim朴素代码,这里为什么说朴素是因为,我们还可以进一步优化prim算法,prim朴素方法的时间复杂度是O(N^2)。如果借助堆,每次选边的时间复杂度是O(logM),然后再使用邻接表来存储图的话,整个算法的时间复杂度会降到O(MlogN)。
下面我们通过一道模板题来实现堆优化版的prim算法。
三.例题P3366 【模板】最小生成树
https://www.luogu.com.cn/problem/P3366
题目描述
如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出 orz
。
输入格式
第一行包含两个整数 N,M,表示该图共有 N 个结点和 M 条无向边。
接下来 M 行每行包含三个整数 Xi,Yi,Zi,表示有一条长度为 Zi 的无向边连接结点 Xi,Yi。
输出格式
如果该图连通,则输出一个整数表示最小生成树的各边的长度之和。如果该图不连通则输出 orz
。
输入输出样例
输入 #1复制
4 5 1 2 2 1 3 2 1 4 3 2 3 4 3 4 3
输出 #1复制
7
说明/提示
数据规模:
对于 20% 的数据,N≤5,M≤20。
对于 40% 的数据,N≤50,M≤2500。
对于 70% 的数据,N≤500,M≤104。
对于 100% 的数据:1≤N≤5000,1≤M≤2×105,1≤Zi≤104。
样例解释:
所以最小生成树的总边权为 2+2+3=7。
堆优化版prim
#include<bits/stdc++.h>
using namespace std;
#define N 1000005
bool vis[N]; //标记数组
int dis[N], head[N]; //dis数组存放边
int n, m, ans, cnt=1, sum;
struct node { //链式前向星结构体
int to, tail, nx;
}e[N];
typedef pair<int, int> pii;
priority_queue<pii, vector<pii>, greater<pii>>q; //优先队列,最小堆
void add(int a, int b, int c) //链式前向星代替邻接表
{
e[cnt].to = b;
e[cnt].tail= c;
e[cnt].nx = head[a];
head[a] = cnt++;
}
void prime() //堆优化prim算法核心代码段
{
q.push(make_pair(0, 1)); //将起始节点1入队
vis[1] = 0;
while (!q.empty()) {
int w = q.top().first; //将队首的对应的值赋值给w和v,方便使用
int v = q.top().second;
q.pop(); //不要忘记出队
if (vis[v])
continue;
vis[v] = 1;
sum += w;
ans++; //记录存放的边数
for (int i = head[v]; i; i = e[i].nx) { //松弛
if (e[i].tail < dis[e[i].to]) {
dis[e[i].to] = e[i].tail;
q.push(make_pair(dis[e[i].to], e[i].to)); //入队
}
}
}
}
int main() {
cin >> n >> m;
for (int i = 1; i <= m; i++) {
int x, y, z;
cin >> x >> y >> z;
add(x, y, z); //完全图,两次存入前向星中
add(y, x, z);
}
memset(dis, 0x3f, sizeof(dis)); //初始化
prime();
if (ans == n)
cout << sum << endl;
else
cout << "orz" << endl;
return 0;
}
OK,本次关于prim算法求最小生成树的总结就结束了,如果对于本篇总结有疑问的欢迎讨论,同时如果有错误或者待修改完善的地方,也希望能够指出,我一定会及时改正,~QVQ~