基本术语
常见的模型评价术语,假设分类目标只有两类,计为正例(positive)和负例(negtive)则:
1)True positives(TP):被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数;
2)False positives(FP):被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数;
3)False negatives(FN):被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数;
4)True negatives(TN):被正确地划分为负例的个数,即实际为负例且被分类器划分为负例的实例数。
评价指标
1)正确率(accuracy)
正确率是我们最常见的评价指标,accuracy=(TP+TN)/(P+N),正确率是被分对的样本数在所有样本数中的占比,通常来说,正确率越高,分类器越好。
2)错误率(error rate)
错误率则与正确率相反,描述被分类器错分的比例,error rate=(FP+FN)/(P+N),对某一个实例来说,分对与分错是互斥事件,所以accuracy=1-error rate。
3)灵敏度(sensitive)
sensitive=TP/P,表示的是所有正例中被分对的比例,衡量了分类器对正例的识别能力。
4)特效度(specificity)
specificity=TN/N,表示的是所有负例中被分对的比例,

本文介绍了分类算法的评估术语,如TP、FP、FN、TN,以及常见的评价指标,包括正确率、错误率、灵敏度、特效度、精度、召回率、F1值、PR曲线、ROC曲线和AUC值,还讨论了计算速度、鲁棒性和可扩展性等其他重要考量因素。
最低0.47元/天 解锁文章
962

被折叠的 条评论
为什么被折叠?



